File size: 5,448 Bytes
e44bfe5
 
 
93fe542
d8dec1c
93fe542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e44bfe5
6fd8187
 
 
 
09e3960
 
877924c
09e3960
45a4c00
30f9575
877924c
10f8c9d
 
44add4f
 
 
 
 
 
 
 
 
 
7a65139
10f8c9d
30f9575
93fe542
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
language:
- en
license: llama3
library_name: transformers
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- arcee-ai/EvolKit-20k
model-index:
- name: Llama-3.1-SuperNova-Lite
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 80.17
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 31.57
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 15.48
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.49
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.67
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.97
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
---
<div align="center">
  <img src="https://i.ibb.co/r072p7j/eopi-ZVu-SQ0-G-Cav78-Byq-Tg.png" alt="Llama-3.1-SuperNova-Lite" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
</div>

## Overview

Llama-3.1-SuperNova-Lite is an 8B parameter model developed by Arcee.ai, based on the Llama-3.1-8B-Instruct architecture. It is a distilled version of the larger Llama-3.1-405B-Instruct model, leveraging offline logits extracted from the 405B parameter variant. This 8B variation of Llama-3.1-SuperNova maintains high performance while offering exceptional instruction-following capabilities and domain-specific adaptability. 

The model was trained using a state-of-the-art distillation pipeline and an instruction dataset generated with [EvolKit](https://github.com/arcee-ai/EvolKit), ensuring accuracy and efficiency across a wide range of tasks. For more information on its training, visit blog.arcee.ai. 

Llama-3.1-SuperNova-Lite excels in both benchmark performance and real-world applications, providing the power of large-scale models in a more compact, efficient form ideal for organizations seeking high performance with reduced resource requirements.

# Evaluations
We will be submitting this model to the OpenLLM Leaderboard for a more conclusive benchmark - but here are our internal benchmarks using the main branch of lm evaluation harness:

| Benchmark   | SuperNova-Lite | Llama-3.1-8b-Instruct |
|-------------|----------------|----------------------|
| IF_Eval     | 81.1           | 77.4                 |
| MMLU Pro    | 38.7           | 37.7                 |
| TruthfulQA  | 64.4           | 55.0                 |
| BBH         | 51.1           | 50.6                 |
| GPQA        | 31.2           | 29.02                |

The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite/blob/main/eval.sh)

# note
This readme will be edited regularly on September 10, 2024 (the day of release). After the final readme is in place we will remove this note.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_arcee-ai__Llama-3.1-SuperNova-Lite)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |29.73|
|IFEval (0-Shot)    |80.17|
|BBH (3-Shot)       |31.57|
|MATH Lvl 5 (4-Shot)|15.48|
|GPQA (0-shot)      | 7.49|
|MuSR (0-shot)      |11.67|
|MMLU-PRO (5-shot)  |31.97|