Crystalcareai commited on
Commit
98dfc2e
·
verified ·
1 Parent(s): 97099dc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -0
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - de
6
+ - ar
7
+ ---
8
+
9
+ <div align="center">
10
+ <img src="https://i.ibb.co/80ssNWS/o-Vdk-Qx-ARNmzr-Pi1h-Efj-SA.webp" alt="Arcee Spark" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
11
+ </div>
12
+
13
+ # Arcee Spark
14
+
15
+ Arcee Spark is a powerful 7B parameter language model that punches well above its weight class. Initialized from Qwen2, this model underwent a sophisticated training process:
16
+
17
+ 1. Fine-tuned on 1.8 million samples
18
+ 2. Merged with Qwen2-7B-Instruct using Arcee's mergekit
19
+ 3. Further refined using Direct Preference Optimization (DPO)
20
+
21
+ This meticulous process results in exceptional performance, with Arcee Spark achieving the highest score on MT-Bench for models of its size, outperforming even GPT-3.5 on many tasks.
22
+
23
+ ## Key Features
24
+
25
+ - 7B parameters
26
+ - State-of-the-art performance for its size
27
+ - Initialized from Qwen2
28
+ - Advanced training process including fine-tuning, merging, and DPO
29
+ - Highest MT-Bench score in the 7B class
30
+ - Outperforms GPT-3.5 on many tasks
31
+
32
+ ## Business Use Cases
33
+
34
+ Arcee Spark offers a compelling solution for businesses looking to leverage advanced AI capabilities without the hefty computational requirements of larger models. Its unique combination of small size and high performance makes it ideal for:
35
+
36
+ 1. **Real-time applications**: Deploy Arcee Spark for chatbots, customer service automation, and interactive systems where low latency is crucial.
37
+
38
+ 2. **Edge computing**: Run sophisticated AI tasks on edge devices or in resource-constrained environments.
39
+
40
+ 3. **Cost-effective scaling**: Implement advanced language AI across your organization without breaking the bank on infrastructure or API costs.
41
+
42
+ 4. **Rapid prototyping**: Quickly develop and iterate on AI-powered features and products.
43
+
44
+ 5. **On-premise deployment**: Easily host Arcee Spark on local infrastructure for enhanced data privacy and security.
45
+
46
+ ## Performance and Efficiency
47
+
48
+ Arcee Spark demonstrates that bigger isn't always better in the world of language models. By leveraging advanced training techniques and architectural optimizations, it delivers:
49
+
50
+ - **Speed**: Blazing fast inference times, often 10-100x faster than larger models.
51
+ - **Efficiency**: Significantly lower computational requirements, reducing both costs and environmental impact.
52
+ - **Flexibility**: Easy to fine-tune or adapt for specific domains or tasks.
53
+
54
+ Despite its compact size, Arcee Spark offers deep reasoning capabilities, making it suitable for a wide range of complex tasks including:
55
+
56
+ - Advanced text generation
57
+ - Detailed question answering
58
+ - Nuanced sentiment analysis
59
+ - Complex problem-solving
60
+ - Code generation and analysis
61
+
62
+
63
+ ## Model Availability
64
+
65
+ - **Quants**: [Arcee Spark GGUF](https://huggingface.co/arcee-ai/Arcee-Spark-GGUF)
66
+ - **FP32**: For those looking to squeeze every bit of performance out of the model, we offer an [FP32 version](https://huggingface.co/arcee-ai/Arcee-Spark-FP32) that scores slightly higher on all benchmarks.
67
+
68
+
69
+
70
+ ## Benchmarks and Evaluations
71
+ <div style="display: flex; justify-content: center; margin: 20px 0;">
72
+ <img src="https://i.ibb.co/dQRtXR7/Screenshot-2024-06-23-at-11-01-59-PM.png" alt="Benchmark Results" style="border-radius: 10px; max-width: 90%; height: auto; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19);">
73
+ </div>
74
+
75
+ <div style="display: flex; justify-content: center; margin: 20px 0;">
76
+ <img src="https://i.ibb.co/BLX8GmZ/Screenshot-2024-06-23-at-10-43-50-PM.png" alt="Additional Benchmark Results" style="border-radius: 10px; max-width: 90%; height: auto; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19);">
77
+ </div>
78
+ ### MT-Bench
79
+
80
+ ```markdown
81
+ ########## First turn ##########
82
+ score
83
+ model turn
84
+ arcee-spark 1 8.777778
85
+ ########## Second turn ##########
86
+ score
87
+ model turn
88
+ arcee-spark 2 8.164634
89
+ ########## Average ##########
90
+ score
91
+ model
92
+ arcee-spark 8.469325
93
+ ```
94
+
95
+ ### EQ-Bench
96
+ EQ-Bench: 71.4
97
+
98
+ ### TruthfulQA
99
+
100
+ | Task |Version|Metric|Value | |Stderr|
101
+ |-------------|------:|------|-----:|---|-----:|
102
+ |truthfulqa_mc| 1|mc1 |0.4382|± |0.0174|
103
+ | | |mc2 |0.6150|± |0.0155|
104
+
105
+ ### AGI-Eval
106
+
107
+ | Task |Version| Metric |Value | |Stderr|
108
+ |------------------------------|------:|--------|-----:|---|-----:|
109
+ |agieval_aqua_rat | 0|acc |0.3937|± |0.0307|
110
+ | | |acc_norm|0.3937|± |0.0307|
111
+ |agieval_logiqa_en | 0|acc |0.4731|± |0.0196|
112
+ | | |acc_norm|0.4854|± |0.0196|
113
+ |agieval_lsat_ar | 0|acc |0.2783|± |0.0296|
114
+ | | |acc_norm|0.3000|± |0.0303|
115
+ |agieval_lsat_lr | 0|acc |0.5549|± |0.0220|
116
+ | | |acc_norm|0.5451|± |0.0221|
117
+ |agieval_lsat_rc | 0|acc |0.6022|± |0.0299|
118
+ | | |acc_norm|0.6208|± |0.0296|
119
+ |agieval_sat_en | 0|acc |0.8155|± |0.0271|
120
+ | | |acc_norm|0.8107|± |0.0274|
121
+ |agieval_sat_en_without_passage| 0|acc |0.4806|± |0.0349|
122
+ | | |acc_norm|0.4612|± |0.0348|
123
+ |agieval_sat_math | 0|acc |0.4909|± |0.0338|
124
+ | | |acc_norm|0.4545|± |0.0336|
125
+
126
+ AGI-eval average: 51.11
127
+
128
+ ### GPT4All Evaluation
129
+
130
+ | Task |Version| Metric |Value | |Stderr|
131
+ |-------------|------:|--------|-----:|---|-----:|
132
+ |arc_challenge| 0|acc |0.5333|± |0.0146|
133
+ | | |acc_norm|0.5640|± |0.0145|
134
+ |arc_easy | 0|acc |0.8131|± |0.0080|
135
+ | | |acc_norm|0.7668|± |0.0087|
136
+ |boolq | 1|acc |0.8471|± |0.0063|
137
+ |hellaswag | 0|acc |0.6206|± |0.0048|
138
+ | | |acc_norm|0.8118|± |0.0039|
139
+ |openbookqa | 0|acc |0.3560|± |0.0214|
140
+ | | |acc_norm|0.4600|± |0.0223|
141
+ |piqa | 0|acc |0.7987|± |0.0094|
142
+ | | |acc_norm|0.8030|± |0.0093|
143
+ |winogrande | 0|acc |0.7690|± |0.0130|
144
+
145
+ Gpt4al Average: 69.37
146
+
147
+ ## License
148
+
149
+ Arcee Spark is released under the Apache 2.0 license.
150
+
151
+ ## Acknowledgments
152
+
153
+ - The Qwen2 team for their foundational work
154
+ - The open-source AI community for their invaluable tools and datasets
155
+ - Our dedicated team of researchers and engineers who push the boundaries of what's possible with compact language models
156
+