File size: 97,046 Bytes
9f1acbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
[{"stream_name":"stdout","time":13.800549499,"data":"Collecting git+https://github.com/facebookresearch/detectron2.git\r\n"}
,{"stream_name":"stdout","time":13.80060226,"data":" Cloning https://github.com/facebookresearch/detectron2.git to /tmp/pip-req-build-bmi0l3o7\r\n"}
,{"stream_name":"stdout","time":13.850537072,"data":" Running command git clone --filter=blob:none --quiet https://github.com/facebookresearch/detectron2.git /tmp/pip-req-build-bmi0l3o7\r\n"}
,{"stream_name":"stdout","time":15.828396187,"data":" Resolved https://github.com/facebookresearch/detectron2.git to commit 8c4a333ceb8df05348759443d0206302485890e0\r\n"}
,{"stream_name":"stdout","time":26.694396295,"data":" Preparing metadata (setup.py) ... \u001b[?25ldone\r\n"}
,{"stream_name":"stdout","time":26.694424157,"data":"\u001b[?25hRequirement already satisfied: Pillow\u003e=7.1 in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (9.5.0)\r\n"}
,{"stream_name":"stdout","time":26.694431161,"data":"Requirement already satisfied: matplotlib in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (3.7.2)\r\n"}
,{"stream_name":"stdout","time":26.795896143,"data":"Collecting pycocotools\u003e=2.0.2 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":26.847171206,"data":" Downloading pycocotools-2.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426 kB)\r\n"}
,{"stream_name":"stdout","time":26.949470176,"data":"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/426.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m307.2/426.2 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m426.2/426.2 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":26.949521699,"data":"\u001b[?25hRequirement already satisfied: termcolor\u003e=1.1 in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (2.3.0)\r\n"}
,{"stream_name":"stdout","time":27.000086278,"data":"Collecting yacs\u003e=0.1.8 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":27.000219986,"data":" Downloading yacs-0.1.8-py3-none-any.whl (14 kB)\r\n"}
,{"stream_name":"stdout","time":27.000226742,"data":"Requirement already satisfied: tabulate in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (0.9.0)\r\n"}
,{"stream_name":"stdout","time":27.000232155,"data":"Requirement already satisfied: cloudpickle in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (2.2.1)\r\n"}
,{"stream_name":"stdout","time":27.000237341,"data":"Requirement already satisfied: tqdm\u003e4.29.0 in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (4.66.1)\r\n"}
,{"stream_name":"stdout","time":27.000244246,"data":"Requirement already satisfied: tensorboard in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (2.12.3)\r\n"}
,{"stream_name":"stdout","time":27.101876277,"data":"Collecting fvcore\u003c0.1.6,\u003e=0.1.5 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":27.101900256,"data":" Downloading fvcore-0.1.5.post20221221.tar.gz (50 kB)\r\n"}
,{"stream_name":"stdout","time":27.101907338,"data":"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/50.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.2/50.2 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":27.913782362,"data":"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\r\n"}
,{"stream_name":"stdout","time":27.964242158,"data":"\u001b[?25hCollecting iopath\u003c0.1.10,\u003e=0.1.7 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":27.964265953,"data":" Downloading iopath-0.1.9-py3-none-any.whl (27 kB)\r\n"}
,{"stream_name":"stdout","time":28.117040412,"data":"Collecting omegaconf\u003c2.4,\u003e=2.1 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":28.117076197,"data":" Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB)\r\n"}
,{"stream_name":"stdout","time":28.117083173,"data":"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/79.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.5/79.5 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":28.168433409,"data":"\u001b[?25hCollecting hydra-core\u003e=1.1 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":28.220127501,"data":" Downloading hydra_core-1.3.2-py3-none-any.whl (154 kB)\r\n"}
,{"stream_name":"stdout","time":28.220149554,"data":"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/154.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.5/154.5 kB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":28.321818222,"data":"\u001b[?25hCollecting black (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":28.373153964,"data":" Downloading black-23.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB)\r\n"}
,{"stream_name":"stdout","time":28.42381878,"data":"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/1.6 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m69.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m39.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":28.423856743,"data":"\u001b[?25hRequirement already satisfied: packaging in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (21.3)\r\n"}
,{"stream_name":"stdout","time":28.423862996,"data":"Requirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from fvcore\u003c0.1.6,\u003e=0.1.5-\u003edetectron2==0.6) (1.23.5)\r\n"}
,{"stream_name":"stdout","time":28.423868875,"data":"Requirement already satisfied: pyyaml\u003e=5.1 in /opt/conda/lib/python3.10/site-packages (from fvcore\u003c0.1.6,\u003e=0.1.5-\u003edetectron2==0.6) (6.0)\r\n"}
,{"stream_name":"stdout","time":28.475184929,"data":"Collecting antlr4-python3-runtime==4.9.* (from hydra-core\u003e=1.1-\u003edetectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":28.475225062,"data":" Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB)\r\n"}
,{"stream_name":"stdout","time":28.527590455,"data":"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/117.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.0/117.0 kB\u001b[0m \u001b[31m9.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":29.33744428,"data":"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\r\n"}
,{"stream_name":"stdout","time":29.439532864,"data":"\u001b[?25hCollecting portalocker (from iopath\u003c0.1.10,\u003e=0.1.7-\u003edetectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":29.439553947,"data":" Downloading portalocker-2.8.2-py3-none-any.whl (17 kB)\r\n"}
,{"stream_name":"stdout","time":29.492629557,"data":"Requirement already satisfied: contourpy\u003e=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (1.1.0)\r\n"}
,{"stream_name":"stdout","time":29.492660448,"data":"Requirement already satisfied: cycler\u003e=0.10 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (0.11.0)\r\n"}
,{"stream_name":"stdout","time":29.492667944,"data":"Requirement already satisfied: fonttools\u003e=4.22.0 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (4.40.0)\r\n"}
,{"stream_name":"stdout","time":29.492674789,"data":"Requirement already satisfied: kiwisolver\u003e=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (1.4.4)\r\n"}
,{"stream_name":"stdout","time":29.492680981,"data":"Requirement already satisfied: pyparsing\u003c3.1,\u003e=2.3.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (3.0.9)\r\n"}
,{"stream_name":"stdout","time":29.492687499,"data":"Requirement already satisfied: python-dateutil\u003e=2.7 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (2.8.2)\r\n"}
,{"stream_name":"stdout","time":29.543539608,"data":"Requirement already satisfied: click\u003e=8.0.0 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (8.1.7)\r\n"}
,{"stream_name":"stdout","time":29.543565355,"data":"Requirement already satisfied: mypy-extensions\u003e=0.4.3 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (1.0.0)\r\n"}
,{"stream_name":"stdout","time":29.645226589,"data":"Collecting packaging (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":29.64524657,"data":" Downloading packaging-23.1-py3-none-any.whl (48 kB)\r\n"}
,{"stream_name":"stdout","time":29.645261524,"data":"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/48.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m48.9/48.9 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":29.695664356,"data":"\u001b[?25hCollecting pathspec\u003e=0.9.0 (from black-\u003edetectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":29.695683454,"data":" Downloading pathspec-0.11.2-py3-none-any.whl (29 kB)\r\n"}
,{"stream_name":"stdout","time":29.747370869,"data":"Requirement already satisfied: platformdirs\u003e=2 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (3.10.0)\r\n"}
,{"stream_name":"stdout","time":29.747404532,"data":"Requirement already satisfied: tomli\u003e=1.1.0 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (2.0.1)\r\n"}
,{"stream_name":"stdout","time":29.747429754,"data":"Requirement already satisfied: typing-extensions\u003e=4.0.1 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (4.6.3)\r\n"}
,{"stream_name":"stdout","time":29.747435658,"data":"Requirement already satisfied: absl-py\u003e=0.4 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (1.4.0)\r\n"}
,{"stream_name":"stdout","time":29.74744468,"data":"Requirement already satisfied: grpcio\u003e=1.48.2 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (1.51.1)\r\n"}
,{"stream_name":"stdout","time":29.747450082,"data":"Requirement already satisfied: google-auth\u003c3,\u003e=1.6.3 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (2.20.0)\r\n"}
,{"stream_name":"stdout","time":29.799535672,"data":"Requirement already satisfied: google-auth-oauthlib\u003c1.1,\u003e=0.5 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (1.0.0)\r\n"}
,{"stream_name":"stdout","time":29.79955317,"data":"Requirement already satisfied: markdown\u003e=2.6.8 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (3.4.3)\r\n"}
,{"stream_name":"stdout","time":29.799559979,"data":"Requirement already satisfied: protobuf\u003e=3.19.6 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (3.20.3)\r\n"}
,{"stream_name":"stdout","time":29.799573088,"data":"Requirement already satisfied: requests\u003c3,\u003e=2.21.0 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (2.31.0)\r\n"}
,{"stream_name":"stdout","time":29.799581193,"data":"Requirement already satisfied: setuptools\u003e=41.0.0 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (68.0.0)\r\n"}
,{"stream_name":"stdout","time":29.79958711,"data":"Requirement already satisfied: tensorboard-data-server\u003c0.8.0,\u003e=0.7.0 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (0.7.1)\r\n"}
,{"stream_name":"stdout","time":29.799592979,"data":"Requirement already satisfied: werkzeug\u003e=1.0.1 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (2.3.7)\r\n"}
,{"stream_name":"stdout","time":29.799598503,"data":"Requirement already satisfied: wheel\u003e=0.26 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (0.40.0)\r\n"}
,{"stream_name":"stdout","time":29.901994492,"data":"Requirement already satisfied: cachetools\u003c6.0,\u003e=2.0.0 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (4.2.4)\r\n"}
,{"stream_name":"stdout","time":29.902019099,"data":"Requirement already satisfied: pyasn1-modules\u003e=0.2.1 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (0.2.7)\r\n"}
,{"stream_name":"stdout","time":29.902030352,"data":"Requirement already satisfied: rsa\u003c5,\u003e=3.1.4 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (4.9)\r\n"}
,{"stream_name":"stdout","time":29.90203704,"data":"Requirement already satisfied: six\u003e=1.9.0 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (1.16.0)\r\n"}
,{"stream_name":"stdout","time":29.902055856,"data":"Requirement already satisfied: urllib3\u003c2.0 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (1.26.15)\r\n"}
,{"stream_name":"stdout","time":29.952776028,"data":"Requirement already satisfied: requests-oauthlib\u003e=0.7.0 in /opt/conda/lib/python3.10/site-packages (from google-auth-oauthlib\u003c1.1,\u003e=0.5-\u003etensorboard-\u003edetectron2==0.6) (1.3.1)\r\n"}
,{"stream_name":"stdout","time":30.054635326,"data":"Requirement already satisfied: charset-normalizer\u003c4,\u003e=2 in /opt/conda/lib/python3.10/site-packages (from requests\u003c3,\u003e=2.21.0-\u003etensorboard-\u003edetectron2==0.6) (3.1.0)\r\n"}
,{"stream_name":"stdout","time":30.054655378,"data":"Requirement already satisfied: idna\u003c4,\u003e=2.5 in /opt/conda/lib/python3.10/site-packages (from requests\u003c3,\u003e=2.21.0-\u003etensorboard-\u003edetectron2==0.6) (3.4)\r\n"}
,{"stream_name":"stdout","time":30.054668613,"data":"Requirement already satisfied: certifi\u003e=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests\u003c3,\u003e=2.21.0-\u003etensorboard-\u003edetectron2==0.6) (2023.7.22)\r\n"}
,{"stream_name":"stdout","time":30.105753386,"data":"Requirement already satisfied: MarkupSafe\u003e=2.1.1 in /opt/conda/lib/python3.10/site-packages (from werkzeug\u003e=1.0.1-\u003etensorboard-\u003edetectron2==0.6) (2.1.3)\r\n"}
,{"stream_name":"stdout","time":30.207797875,"data":"Requirement already satisfied: pyasn1\u003c0.5.0,\u003e=0.4.6 in /opt/conda/lib/python3.10/site-packages (from pyasn1-modules\u003e=0.2.1-\u003egoogle-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (0.4.8)\r\n"}
,{"stream_name":"stdout","time":30.20781625,"data":"Requirement already satisfied: oauthlib\u003e=3.0.0 in /opt/conda/lib/python3.10/site-packages (from requests-oauthlib\u003e=0.7.0-\u003egoogle-auth-oauthlib\u003c1.1,\u003e=0.5-\u003etensorboard-\u003edetectron2==0.6) (3.2.2)\r\n"}
,{"stream_name":"stdout","time":30.310920006,"data":"Building wheels for collected packages: detectron2, fvcore, antlr4-python3-runtime\r\n"}
,{"stream_name":"stdout","time":201.216497586,"data":" Building wheel for detectron2 (setup.py) ... \u001b[?25l-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \bdone\r\n"}
,{"stream_name":"stdout","time":201.216546505,"data":"\u001b[?25h Created wheel for detectron2: filename=detectron2-0.6-cp310-cp310-linux_x86_64.whl size=1255108 sha256=c1bb4c192a8a85f1c87b6eff3d9a1bcc8cb87afba91bb90713b6d52f7d2df0de\r\n"}
,{"stream_name":"stdout","time":201.216554265,"data":" Stored in directory: /tmp/pip-ephem-wheel-cache-94a0tk58/wheels/47/e5/15/94c80df2ba85500c5d76599cc307c0a7079d0e221bb6fc4375\r\n"}
,{"stream_name":"stdout","time":202.484371077,"data":" Building wheel for fvcore (setup.py) ... \u001b[?25l-\b \bdone\r\n"}
,{"stream_name":"stdout","time":202.484412358,"data":"\u001b[?25h Created wheel for fvcore: filename=fvcore-0.1.5.post20221221-py3-none-any.whl size=61405 sha256=bbcfeea57f018330174c976c074113dedf0a54d49dc1e2e15cc21ebd5d4805e8\r\n"}
,{"stream_name":"stdout","time":202.484420144,"data":" Stored in directory: /root/.cache/pip/wheels/01/c0/af/77c1cf53a1be9e42a52b48e5af2169d40ec2e89f7362489dd0\r\n"}
,{"stream_name":"stdout","time":203.802844341,"data":" Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l-\b \bdone\r\n"}
,{"stream_name":"stdout","time":203.802882933,"data":"\u001b[?25h Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=9dc6457d743afbce3116c7471223a132c614f7213c1f42c7b1d3e2e6ebbab799\r\n"}
,{"stream_name":"stdout","time":203.802890735,"data":" Stored in directory: /root/.cache/pip/wheels/12/93/dd/1f6a127edc45659556564c5730f6d4e300888f4bca2d4c5a88\r\n"}
,{"stream_name":"stdout","time":203.802910449,"data":"Successfully built detectron2 fvcore antlr4-python3-runtime\r\n"}
,{"stream_name":"stdout","time":215.46712805,"data":"Installing collected packages: antlr4-python3-runtime, yacs, portalocker, pathspec, packaging, omegaconf, iopath, hydra-core, black, pycocotools, fvcore, detectron2\r\n"}
,{"stream_name":"stdout","time":215.669267295,"data":" Attempting uninstall: packaging\r\n"}
,{"stream_name":"stdout","time":215.669311267,"data":" Found existing installation: packaging 21.3\r\n"}
,{"stream_name":"stdout","time":215.66931776,"data":" Uninstalling packaging-21.3:\r\n"}
,{"stream_name":"stdout","time":215.72093058,"data":" Successfully uninstalled packaging-21.3\r\n"}
,{"stream_name":"stdout","time":217.038332118,"data":"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n"}
,{"stream_name":"stdout","time":217.038369214,"data":"cudf 23.8.0 requires cupy-cuda11x\u003e=12.0.0, which is not installed.\r\n"}
,{"stream_name":"stdout","time":217.038380177,"data":"cuml 23.8.0 requires cupy-cuda11x\u003e=12.0.0, which is not installed.\r\n"}
,{"stream_name":"stdout","time":217.038387024,"data":"dask-cudf 23.8.0 requires cupy-cuda11x\u003e=12.0.0, which is not installed.\r\n"}
,{"stream_name":"stdout","time":217.038392055,"data":"cudf 23.8.0 requires pandas\u003c1.6.0dev0,\u003e=1.3, but you have pandas 2.0.2 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038397376,"data":"cudf 23.8.0 requires protobuf\u003c5,\u003e=4.21, but you have protobuf 3.20.3 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038402616,"data":"cuml 23.8.0 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.03840767,"data":"dask-cuda 23.8.0 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038412866,"data":"dask-cuda 23.8.0 requires pandas\u003c1.6.0dev0,\u003e=1.3, but you have pandas 2.0.2 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038417787,"data":"dask-cudf 23.8.0 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.03842299,"data":"dask-cudf 23.8.0 requires pandas\u003c1.6.0dev0,\u003e=1.3, but you have pandas 2.0.2 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038427905,"data":"distributed 2023.7.1 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038433206,"data":"google-cloud-bigquery 2.34.4 requires packaging\u003c22.0dev,\u003e=14.3, but you have packaging 23.1 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038438437,"data":"jupyterlab-lsp 4.2.0 requires jupyter-lsp\u003e=2.0.0, but you have jupyter-lsp 1.5.1 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038443813,"data":"momepy 0.6.0 requires shapely\u003e=2, but you have shapely 1.8.5.post1 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038449692,"data":"pymc3 3.11.5 requires numpy\u003c1.22.2,\u003e=1.15.0, but you have numpy 1.23.5 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038459679,"data":"pymc3 3.11.5 requires scipy\u003c1.8.0,\u003e=1.7.3, but you have scipy 1.11.2 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038469082,"data":"raft-dask 23.8.0 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038487331,"data":"ydata-profiling 4.3.1 requires scipy\u003c1.11,\u003e=1.4.1, but you have scipy 1.11.2 which is incompatible.\u001b[0m\u001b[31m\r\n"}
,{"stream_name":"stdout","time":217.038494464,"data":"\u001b[0mSuccessfully installed antlr4-python3-runtime-4.9.3 black-23.9.1 detectron2-0.6 fvcore-0.1.5.post20221221 hydra-core-1.3.2 iopath-0.1.9 omegaconf-2.3.0 packaging-23.1 pathspec-0.11.2 portalocker-2.8.2 pycocotools-2.0.7 yacs-0.1.8\r\n"}
,{"stream_name":"stdout","time":219.774063631,"data":"2.0.0 True\n"}
,{"stream_name":"stdout","time":220.700549514,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":220.700602938,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":220.700611439,"data":"\n"}
,{"stream_name":"stdout","time":220.702501643,"data":"\u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0mLoaded 123 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/train/train.json\n"}
,{"stream_name":"stdout","time":220.744890243,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":220.744911035,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":220.744927809,"data":"\n"}
,{"stream_name":"stdout","time":220.746546326,"data":"\u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0mLoaded 123 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/train/train.json\n"}
,{"stream_name":"stdout","time":220.788803161,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":220.788823346,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":220.788830261,"data":"\n"}
,{"stream_name":"stdout","time":220.789918143,"data":"\u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0mLoaded 18 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/valid/valid.json\n"}
,{"stream_name":"stdout","time":227.179968614,"data":"\u001b[32m[09/23 07:38:42 d2.engine.defaults]: \u001b[0mModel:\n"}
,{"stream_name":"stdout","time":227.180007033,"data":"GeneralizedRCNN(\n"}
,{"stream_name":"stdout","time":227.180015259,"data":" (backbone): FPN(\n"}
,{"stream_name":"stdout","time":227.180020811,"data":" (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180026353,"data":" (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180031327,"data":" (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180037021,"data":" (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180041947,"data":" (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180046859,"data":" (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180051985,"data":" (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180056954,"data":" (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180072911,"data":" (top_block): LastLevelMaxPool()\n"}
,{"stream_name":"stdout","time":227.180077739,"data":" (bottom_up): ResNet(\n"}
,{"stream_name":"stdout","time":227.180084569,"data":" (stem): BasicStem(\n"}
,{"stream_name":"stdout","time":227.180105523,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180113641,"data":" 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False\n"}
,{"stream_name":"stdout","time":227.180118051,"data":" (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180123293,"data":" )\n"}
,{"stream_name":"stdout","time":227.180128394,"data":" )\n"}
,{"stream_name":"stdout","time":227.180132861,"data":" (res2): Sequential(\n"}
,{"stream_name":"stdout","time":227.180137663,"data":" (0): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180142884,"data":" (shortcut): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180147615,"data":" 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180152143,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18015687,"data":" )\n"}
,{"stream_name":"stdout","time":227.18016138,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180165908,"data":" 64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180171071,"data":" (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180176042,"data":" )\n"}
,{"stream_name":"stdout","time":227.180180789,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180187851,"data":" 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180192613,"data":" (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180197731,"data":" )\n"}
,{"stream_name":"stdout","time":227.180203034,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180207967,"data":" 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180213024,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180218341,"data":" )\n"}
,{"stream_name":"stdout","time":227.180223163,"data":" )\n"}
,{"stream_name":"stdout","time":227.180227909,"data":" (1): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180232924,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180237973,"data":" 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180243241,"data":" (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180248315,"data":" )\n"}
,{"stream_name":"stdout","time":227.180253167,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.18026029,"data":" 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180265617,"data":" (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180282245,"data":" )\n"}
,{"stream_name":"stdout","time":227.180286668,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180291644,"data":" 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180301924,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180306778,"data":" )\n"}
,{"stream_name":"stdout","time":227.180311389,"data":" )\n"}
,{"stream_name":"stdout","time":227.180315953,"data":" (2): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180320733,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180325365,"data":" 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.1803301,"data":" (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180335192,"data":" )\n"}
,{"stream_name":"stdout","time":227.180339828,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180344423,"data":" 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.18034927,"data":" (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180354118,"data":" )\n"}
,{"stream_name":"stdout","time":227.180358687,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180363411,"data":" 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180368875,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180373783,"data":" )\n"}
,{"stream_name":"stdout","time":227.180378451,"data":" )\n"}
,{"stream_name":"stdout","time":227.180383843,"data":" )\n"}
,{"stream_name":"stdout","time":227.180388536,"data":" (res3): Sequential(\n"}
,{"stream_name":"stdout","time":227.18039321,"data":" (0): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180398469,"data":" (shortcut): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180403798,"data":" 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.180408623,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180413364,"data":" )\n"}
,{"stream_name":"stdout","time":227.18041866,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.18042418,"data":" 256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.180428929,"data":" (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180434756,"data":" )\n"}
,{"stream_name":"stdout","time":227.18043941,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180444084,"data":" 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180449185,"data":" (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180454053,"data":" )\n"}
,{"stream_name":"stdout","time":227.180459049,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180463752,"data":" 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180469139,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180473977,"data":" )\n"}
,{"stream_name":"stdout","time":227.180480028,"data":" )\n"}
,{"stream_name":"stdout","time":227.180488874,"data":" (1): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180493769,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180506633,"data":" 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.18051207,"data":" (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180516953,"data":" )\n"}
,{"stream_name":"stdout","time":227.180521744,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180526465,"data":" 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180531405,"data":" (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18053795,"data":" )\n"}
,{"stream_name":"stdout","time":227.180542618,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180547357,"data":" 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180552208,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180557098,"data":" )\n"}
,{"stream_name":"stdout","time":227.180561944,"data":" )\n"}
,{"stream_name":"stdout","time":227.1805664,"data":" (2): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.18057115,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180575763,"data":" 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180580599,"data":" (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180585333,"data":" )\n"}
,{"stream_name":"stdout","time":227.180590415,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180595183,"data":" 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180600173,"data":" (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180604947,"data":" )\n"}
,{"stream_name":"stdout","time":227.180610435,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180615085,"data":" 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180619835,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180625462,"data":" )\n"}
,{"stream_name":"stdout","time":227.180630042,"data":" )\n"}
,{"stream_name":"stdout","time":227.180634662,"data":" (3): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180640148,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180644815,"data":" 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180649923,"data":" (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180654786,"data":" )\n"}
,{"stream_name":"stdout","time":227.180659695,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180664411,"data":" 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180670372,"data":" (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18067983,"data":" )\n"}
,{"stream_name":"stdout","time":227.180684519,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180689705,"data":" 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180700005,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180704891,"data":" )\n"}
,{"stream_name":"stdout","time":227.18070948,"data":" )\n"}
,{"stream_name":"stdout","time":227.180714443,"data":" )\n"}
,{"stream_name":"stdout","time":227.180718966,"data":" (res4): Sequential(\n"}
,{"stream_name":"stdout","time":227.180723353,"data":" (0): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180728198,"data":" (shortcut): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180732851,"data":" 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.180737728,"data":" (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180742506,"data":" )\n"}
,{"stream_name":"stdout","time":227.180747193,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180751991,"data":" 512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.180757062,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180762048,"data":" )\n"}
,{"stream_name":"stdout","time":227.180766557,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.18077108,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180776155,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180781206,"data":" )\n"}
,{"stream_name":"stdout","time":227.180786045,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180791662,"data":" 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180797355,"data":" (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180802206,"data":" )\n"}
,{"stream_name":"stdout","time":227.180806824,"data":" )\n"}
,{"stream_name":"stdout","time":227.180811377,"data":" (1): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180816235,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180820949,"data":" 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180825913,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180830626,"data":" )\n"}
,{"stream_name":"stdout","time":227.180835287,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180839938,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180844728,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180849879,"data":" )\n"}
,{"stream_name":"stdout","time":227.18085443,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180859075,"data":" 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180864006,"data":" (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180875643,"data":" )\n"}
,{"stream_name":"stdout","time":227.180880301,"data":" )\n"}
,{"stream_name":"stdout","time":227.180884996,"data":" (2): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.18088957,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180894262,"data":" 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.18089929,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180903955,"data":" )\n"}
,{"stream_name":"stdout","time":227.180908812,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180913675,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180918443,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180923131,"data":" )\n"}
,{"stream_name":"stdout","time":227.180927761,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180932395,"data":" 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180937224,"data":" (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180942078,"data":" )\n"}
,{"stream_name":"stdout","time":227.180946653,"data":" )\n"}
,{"stream_name":"stdout","time":227.180951224,"data":" (3): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180956201,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180960857,"data":" 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180966914,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18097187,"data":" )\n"}
,{"stream_name":"stdout","time":227.180976406,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180981079,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180986389,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180991115,"data":" )\n"}
,{"stream_name":"stdout","time":227.180995671,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181000226,"data":" 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181005248,"data":" (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181010191,"data":" )\n"}
,{"stream_name":"stdout","time":227.181014824,"data":" )\n"}
,{"stream_name":"stdout","time":227.181019346,"data":" (4): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181023859,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181028565,"data":" 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181033696,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181038536,"data":" )\n"}
,{"stream_name":"stdout","time":227.181043588,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181048625,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181058514,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181063493,"data":" )\n"}
,{"stream_name":"stdout","time":227.181067956,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181072521,"data":" 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181077503,"data":" (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181082536,"data":" )\n"}
,{"stream_name":"stdout","time":227.181087066,"data":" )\n"}
,{"stream_name":"stdout","time":227.181102295,"data":" (5): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181108497,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181113243,"data":" 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181118186,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181122985,"data":" )\n"}
,{"stream_name":"stdout","time":227.181127606,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181132206,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181138041,"data":" (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181142835,"data":" )\n"}
,{"stream_name":"stdout","time":227.181147444,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181169302,"data":" 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181174493,"data":" (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181179363,"data":" )\n"}
,{"stream_name":"stdout","time":227.181184361,"data":" )\n"}
,{"stream_name":"stdout","time":227.181189231,"data":" )\n"}
,{"stream_name":"stdout","time":227.181194132,"data":" (res5): Sequential(\n"}
,{"stream_name":"stdout","time":227.18119915,"data":" (0): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181204208,"data":" (shortcut): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181209271,"data":" 1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.18121447,"data":" (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181219765,"data":" )\n"}
,{"stream_name":"stdout","time":227.181225295,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181230167,"data":" 1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.181235147,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181240345,"data":" )\n"}
,{"stream_name":"stdout","time":227.1812452,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181250229,"data":" 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181255323,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18126061,"data":" )\n"}
,{"stream_name":"stdout","time":227.181265673,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181275615,"data":" 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181280497,"data":" (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181285533,"data":" )\n"}
,{"stream_name":"stdout","time":227.181290529,"data":" )\n"}
,{"stream_name":"stdout","time":227.181295393,"data":" (1): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181300267,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181305406,"data":" 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181310517,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18131568,"data":" )\n"}
,{"stream_name":"stdout","time":227.181320611,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181326367,"data":" 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181331657,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181336564,"data":" )\n"}
,{"stream_name":"stdout","time":227.181341456,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181346381,"data":" 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181351864,"data":" (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181356955,"data":" )\n"}
,{"stream_name":"stdout","time":227.181361823,"data":" )\n"}
,{"stream_name":"stdout","time":227.18136669,"data":" (2): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181371641,"data":" (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181376549,"data":" 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181382795,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181388078,"data":" )\n"}
,{"stream_name":"stdout","time":227.181393547,"data":" (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181398537,"data":" 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181403673,"data":" (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181408696,"data":" )\n"}
,{"stream_name":"stdout","time":227.181413535,"data":" (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181418905,"data":" 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181424205,"data":" (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181429122,"data":" )\n"}
,{"stream_name":"stdout","time":227.181434063,"data":" )\n"}
,{"stream_name":"stdout","time":227.181438825,"data":" )\n"}
,{"stream_name":"stdout","time":227.181443796,"data":" )\n"}
,{"stream_name":"stdout","time":227.181448638,"data":" )\n"}
,{"stream_name":"stdout","time":227.181453454,"data":" (proposal_generator): RPN(\n"}
,{"stream_name":"stdout","time":227.181458465,"data":" (rpn_head): StandardRPNHead(\n"}
,{"stream_name":"stdout","time":227.181463297,"data":" (conv): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181472579,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.181477859,"data":" (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.181482759,"data":" )\n"}
,{"stream_name":"stdout","time":227.181488225,"data":" (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.181493739,"data":" (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.181498749,"data":" )\n"}
,{"stream_name":"stdout","time":227.181512003,"data":" (anchor_generator): DefaultAnchorGenerator(\n"}
,{"stream_name":"stdout","time":227.181517215,"data":" (cell_anchors): BufferList()\n"}
,{"stream_name":"stdout","time":227.181522254,"data":" )\n"}
,{"stream_name":"stdout","time":227.181527441,"data":" )\n"}
,{"stream_name":"stdout","time":227.181532261,"data":" (roi_heads): StandardROIHeads(\n"}
,{"stream_name":"stdout","time":227.181537249,"data":" (box_pooler): ROIPooler(\n"}
,{"stream_name":"stdout","time":227.18154221,"data":" (level_poolers): ModuleList(\n"}
,{"stream_name":"stdout","time":227.181547381,"data":" (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.18155303,"data":" (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.181558271,"data":" (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.181565761,"data":" (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.181729465,"data":" )\n"}
,{"stream_name":"stdout","time":227.181751722,"data":" )\n"}
,{"stream_name":"stdout","time":227.181773205,"data":" (box_head): FastRCNNConvFCHead(\n"}
,{"stream_name":"stdout","time":227.181790567,"data":" (flatten): Flatten(start_dim=1, end_dim=-1)\n"}
,{"stream_name":"stdout","time":227.181808844,"data":" (fc1): Linear(in_features=12544, out_features=1024, bias=True)\n"}
,{"stream_name":"stdout","time":227.181826875,"data":" (fc_relu1): ReLU()\n"}
,{"stream_name":"stdout","time":227.181845128,"data":" (fc2): Linear(in_features=1024, out_features=1024, bias=True)\n"}
,{"stream_name":"stdout","time":227.181864632,"data":" (fc_relu2): ReLU()\n"}
,{"stream_name":"stdout","time":227.181883825,"data":" )\n"}
,{"stream_name":"stdout","time":227.181900094,"data":" (box_predictor): FastRCNNOutputLayers(\n"}
,{"stream_name":"stdout","time":227.181917776,"data":" (cls_score): Linear(in_features=1024, out_features=5, bias=True)\n"}
,{"stream_name":"stdout","time":227.181933954,"data":" (bbox_pred): Linear(in_features=1024, out_features=16, bias=True)\n"}
,{"stream_name":"stdout","time":227.181953794,"data":" )\n"}
,{"stream_name":"stdout","time":227.181971907,"data":" (mask_pooler): ROIPooler(\n"}
,{"stream_name":"stdout","time":227.181989415,"data":" (level_poolers): ModuleList(\n"}
,{"stream_name":"stdout","time":227.182006215,"data":" (0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.18202305,"data":" (1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.182044622,"data":" (2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.182071865,"data":" (3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.182111882,"data":" )\n"}
,{"stream_name":"stdout","time":227.182133524,"data":" )\n"}
,{"stream_name":"stdout","time":227.182149704,"data":" (mask_head): MaskRCNNConvUpsampleHead(\n"}
,{"stream_name":"stdout","time":227.182202938,"data":" (mask_fcn1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.182221526,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.182238354,"data":" (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.182255526,"data":" )\n"}
,{"stream_name":"stdout","time":227.182291705,"data":" (mask_fcn2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.182309548,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.182325672,"data":" (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.182342486,"data":" )\n"}
,{"stream_name":"stdout","time":227.182375262,"data":" (mask_fcn3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.182390364,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.182406994,"data":" (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.182423953,"data":" )\n"}
,{"stream_name":"stdout","time":227.18245527,"data":" (mask_fcn4): Conv2d(\n"}
,{"stream_name":"stdout","time":227.182472856,"data":" 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.182488279,"data":" (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.18255243,"data":" )\n"}
,{"stream_name":"stdout","time":227.182569518,"data":" (deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))\n"}
,{"stream_name":"stdout","time":227.182585696,"data":" (deconv_relu): ReLU()\n"}
,{"stream_name":"stdout","time":227.182619832,"data":" (predictor): Conv2d(256, 4, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.182639116,"data":" )\n"}
,{"stream_name":"stdout","time":227.182661524,"data":" )\n"}
,{"stream_name":"stdout","time":227.18267819,"data":")\n"}
,{"stream_name":"stdout","time":227.194125733,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:38:42 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":227.194167193,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":227.194180416,"data":"\n"}
,{"stream_name":"stdout","time":227.196109555,"data":"\u001b[32m[09/23 07:38:42 d2.data.datasets.coco]: \u001b[0mLoaded 123 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/train/train.json\n"}
,{"stream_name":"stdout","time":227.202177857,"data":"\u001b[32m[09/23 07:38:42 d2.data.build]: \u001b[0mRemoved 0 images with no usable annotations. 123 images left.\n"}
,{"stream_name":"stdout","time":227.21499769,"data":"\u001b[32m[09/23 07:38:42 d2.data.build]: \u001b[0mDistribution of instances among all 4 categories:\n"}
,{"stream_name":"stdout","time":227.215031132,"data":"\u001b[36m| category | #instances | category | #instances | category | #instances |\n"}
,{"stream_name":"stdout","time":227.2150391,"data":"|:-------------:|:-------------|:-----------|:-------------|:-----------|:-------------|\n"}
,{"stream_name":"stdout","time":227.215057176,"data":"| leaf, flowe.. | 0 | 0 | 440 | 1 | 164 |\n"}
,{"stream_name":"stdout","time":227.215063542,"data":"| 2 | 114 | | | | |\n"}
,{"stream_name":"stdout","time":227.215069607,"data":"| total | 718 | | | | |\u001b[0m\n"}
,{"stream_name":"stdout","time":227.21704684,"data":"\u001b[32m[09/23 07:38:42 d2.data.dataset_mapper]: \u001b[0m[DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()]\n"}
,{"stream_name":"stdout","time":227.218765315,"data":"\u001b[32m[09/23 07:38:42 d2.data.build]: \u001b[0mUsing training sampler TrainingSampler\n"}
,{"stream_name":"stdout","time":227.220234089,"data":"\u001b[32m[09/23 07:38:42 d2.data.common]: \u001b[0mSerializing the dataset using: \u003cclass 'detectron2.data.common._TorchSerializedList'\u003e\n"}
,{"stream_name":"stdout","time":227.224137052,"data":"\u001b[32m[09/23 07:38:42 d2.data.common]: \u001b[0mSerializing 123 elements to byte tensors and concatenating them all ...\n"}
,{"stream_name":"stdout","time":227.230644552,"data":"\u001b[32m[09/23 07:38:42 d2.data.common]: \u001b[0mSerialized dataset takes 0.17 MiB\n"}
,{"stream_name":"stdout","time":227.232131018,"data":"\u001b[32m[09/23 07:38:42 d2.checkpoint.detection_checkpoint]: \u001b[0m[DetectionCheckpointer] Loading from https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl ...\n"}
,{"stream_name":"stderr","time":228.472521436,"data":"\rmodel_final_f10217.pkl: 0.00B [00:00, ?B/s]\rmodel_final_f10217.pkl: 0%| | 8.19k/178M [00:00\u003c44:21, 66.8kB/s]\rmodel_final_f10217.pkl: 3%|▎ | 4.88M/178M [00:00\u003c00:06, 25.2MB/s]\rmodel_final_f10217.pkl: 7%|▋ | 12.7M/178M [00:00\u003c00:03, 47.7MB/s]\rmodel_final_f10217.pkl: 13%|█▎ | 22.4M/178M [00:00\u003c00:02, 66.1MB/s]\rmodel_final_f10217.pkl: 20%|█▉ | 34.8M/178M [00:00\u003c00:01, 86.4MB/s]\rmodel_final_f10217.pkl: 28%|██▊ | 49.2M/178M [00:00\u003c00:01, 106MB/s] \rmodel_final_f10217.pkl: 38%|███▊ | 67.8M/178M [00:00\u003c00:00, 132MB/s]\rmodel_final_f10217.pkl: 51%|█████ | 90.0M/178M [00:00\u003c00:00, 160MB/s]\rmodel_final_f10217.pkl: 64%|██████▎ | 113M/178M [00:00\u003c00:00, 183MB/s] \rmodel_final_f10217.pkl: 77%|███████▋ | 136M/178M [00:01\u003c00:00, 198MB/s]\rmodel_final_f10217.pkl: 90%|████████▉ | 160M/178M [00:01\u003c00:00, 208MB/s]\rmodel_final_f10217.pkl: 178MB [00:01, 147MB/s] \n"}
,{"stream_name":"stdout","time":228.653681696,"data":"\u001b[32m[09/23 07:38:44 d2.engine.train_loop]: \u001b[0mStarting training from iteration 0\n"}
,{"stream_name":"stderr","time":241.278435168,"data":"/opt/conda/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /usr/local/src/pytorch/aten/src/ATen/native/TensorShape.cpp:3483.)\n"}
,{"stream_name":"stderr","time":241.27850688,"data":" return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n"}
,{"stream_name":"stdout","time":251.518974705,"data":"\u001b[32m[09/23 07:39:07 d2.utils.events]: \u001b[0m eta: 0:05:39 iter: 19 total_loss: 2.828 loss_cls: 1.447 loss_box_reg: 0.4917 loss_mask: 0.6928 loss_rpn_cls: 0.1044 loss_rpn_loc: 0.02792 time: 0.3470 last_time: 0.3698 data_time: 0.0158 last_data_time: 0.0070 lr: 4.9953e-06 max_mem: 1767M\n"}
,{"stream_name":"stderr","time":260.105853923,"data":"/opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version \u003e=1.16.5 and \u003c1.23.0 is required for this version of SciPy (detected version 1.23.5\n"}
,{"stream_name":"stderr","time":260.105889154,"data":" warnings.warn(f\"A NumPy version \u003e={np_minversion} and \u003c{np_maxversion}\"\n"}
,{"stream_name":"stdout","time":274.857913039,"data":"\u001b[32m[09/23 07:39:30 d2.utils.events]: \u001b[0m eta: 0:05:29 iter: 39 total_loss: 2.735 loss_cls: 1.383 loss_box_reg: 0.5501 loss_mask: 0.688 loss_rpn_cls: 0.02683 loss_rpn_loc: 0.01686 time: 0.4269 last_time: 0.3428 data_time: 0.0080 last_data_time: 0.0089 lr: 9.9902e-06 max_mem: 1772M\n"}
,{"stream_name":"stdout","time":281.719035339,"data":"\u001b[32m[09/23 07:39:37 d2.utils.events]: \u001b[0m eta: 0:05:22 iter: 59 total_loss: 2.39 loss_cls: 1.152 loss_box_reg: 0.5103 loss_mask: 0.6818 loss_rpn_cls: 0.05638 loss_rpn_loc: 0.02092 time: 0.3976 last_time: 0.4037 data_time: 0.0069 last_data_time: 0.0072 lr: 1.4985e-05 max_mem: 1772M\n"}
,{"stream_name":"stdout","time":288.837230053,"data":"\u001b[32m[09/23 07:39:44 d2.utils.events]: \u001b[0m eta: 0:05:17 iter: 79 total_loss: 2.393 loss_cls: 0.9233 loss_box_reg: 0.6164 loss_mask: 0.6686 loss_rpn_cls: 0.08493 loss_rpn_loc: 0.02326 time: 0.3868 last_time: 0.3918 data_time: 0.0072 last_data_time: 0.0065 lr: 1.998e-05 max_mem: 1773M\n"}
,{"stream_name":"stdout","time":295.766690036,"data":"\u001b[32m[09/23 07:39:51 d2.utils.events]: \u001b[0m eta: 0:05:08 iter: 99 total_loss: 2.018 loss_cls: 0.7153 loss_box_reg: 0.4563 loss_mask: 0.6582 loss_rpn_cls: 0.05049 loss_rpn_loc: 0.02335 time: 0.3778 last_time: 0.3366 data_time: 0.0086 last_data_time: 0.0065 lr: 2.4975e-05 max_mem: 1773M\n"}
,{"stream_name":"stdout","time":302.773351708,"data":"\u001b[32m[09/23 07:39:58 d2.utils.events]: \u001b[0m eta: 0:05:02 iter: 119 total_loss: 1.87 loss_cls: 0.6182 loss_box_reg: 0.5203 loss_mask: 0.6352 loss_rpn_cls: 0.0492 loss_rpn_loc: 0.02022 time: 0.3735 last_time: 0.3489 data_time: 0.0083 last_data_time: 0.0062 lr: 2.997e-05 max_mem: 1774M\n"}
,{"stream_name":"stdout","time":309.871407386,"data":"\u001b[32m[09/23 07:40:05 d2.utils.events]: \u001b[0m eta: 0:04:58 iter: 139 total_loss: 1.879 loss_cls: 0.5958 loss_box_reg: 0.5152 loss_mask: 0.6125 loss_rpn_cls: 0.03336 loss_rpn_loc: 0.01598 time: 0.3707 last_time: 0.3607 data_time: 0.0081 last_data_time: 0.0070 lr: 3.4965e-05 max_mem: 1774M\n"}
,{"stream_name":"stdout","time":316.890266425,"data":"\u001b[32m[09/23 07:40:12 d2.utils.events]: \u001b[0m eta: 0:04:51 iter: 159 total_loss: 1.826 loss_cls: 0.5633 loss_box_reg: 0.5863 loss_mask: 0.5935 loss_rpn_cls: 0.0336 loss_rpn_loc: 0.0204 time: 0.3682 last_time: 0.3499 data_time: 0.0078 last_data_time: 0.0063 lr: 3.996e-05 max_mem: 1774M\n"}
,{"stream_name":"stdout","time":323.911162118,"data":"\u001b[32m[09/23 07:40:19 d2.utils.events]: \u001b[0m eta: 0:04:44 iter: 179 total_loss: 1.708 loss_cls: 0.5234 loss_box_reg: 0.5497 loss_mask: 0.5757 loss_rpn_cls: 0.02893 loss_rpn_loc: 0.02126 time: 0.3662 last_time: 0.3599 data_time: 0.0071 last_data_time: 0.0067 lr: 4.4955e-05 max_mem: 1774M\n"}
,{"stream_name":"stdout","time":330.976295222,"data":"\u001b[32m[09/23 07:40:26 d2.utils.events]: \u001b[0m eta: 0:04:38 iter: 199 total_loss: 1.733 loss_cls: 0.5085 loss_box_reg: 0.5441 loss_mask: 0.5637 loss_rpn_cls: 0.03238 loss_rpn_loc: 0.02728 time: 0.3646 last_time: 0.3137 data_time: 0.0072 last_data_time: 0.0081 lr: 4.995e-05 max_mem: 1774M\n"}
,{"stream_name":"stdout","time":338.394322939,"data":"\u001b[32m[09/23 07:40:33 d2.utils.events]: \u001b[0m eta: 0:04:32 iter: 219 total_loss: 1.709 loss_cls: 0.5236 loss_box_reg: 0.5941 loss_mask: 0.5093 loss_rpn_cls: 0.02147 loss_rpn_loc: 0.02077 time: 0.3653 last_time: 0.3540 data_time: 0.0114 last_data_time: 0.0258 lr: 5.4945e-05 max_mem: 1774M\n"}
,{"stream_name":"stdout","time":345.525876389,"data":"\u001b[32m[09/23 07:40:41 d2.utils.events]: \u001b[0m eta: 0:04:26 iter: 239 total_loss: 1.628 loss_cls: 0.4467 loss_box_reg: 0.5763 loss_mask: 0.5075 loss_rpn_cls: 0.02056 loss_rpn_loc: 0.02806 time: 0.3645 last_time: 0.3969 data_time: 0.0085 last_data_time: 0.0064 lr: 5.994e-05 max_mem: 1774M\n"}
,{"stream_name":"stdout","time":352.559771032,"data":"\u001b[32m[09/23 07:40:48 d2.utils.events]: \u001b[0m eta: 0:04:20 iter: 259 total_loss: 1.477 loss_cls: 0.416 loss_box_reg: 0.5193 loss_mask: 0.4923 loss_rpn_cls: 0.01588 loss_rpn_loc: 0.0164 time: 0.3634 last_time: 0.3532 data_time: 0.0069 last_data_time: 0.0061 lr: 6.4935e-05 max_mem: 1774M\n"}
,{"stream_name":"stdout","time":359.769010562,"data":"\u001b[32m[09/23 07:40:55 d2.utils.events]: \u001b[0m eta: 0:04:13 iter: 279 total_loss: 1.503 loss_cls: 0.4283 loss_box_reg: 0.566 loss_mask: 0.4444 loss_rpn_cls: 0.02047 loss_rpn_loc: 0.02029 time: 0.3632 last_time: 0.2831 data_time: 0.0087 last_data_time: 0.0088 lr: 6.993e-05 max_mem: 1775M\n"}
,{"stream_name":"stdout","time":367.474066393,"data":"\u001b[32m[09/23 07:41:02 d2.utils.events]: \u001b[0m eta: 0:04:07 iter: 299 total_loss: 1.536 loss_cls: 0.4297 loss_box_reg: 0.5559 loss_mask: 0.437 loss_rpn_cls: 0.03421 loss_rpn_loc: 0.02454 time: 0.3645 last_time: 0.3751 data_time: 0.0074 last_data_time: 0.0091 lr: 7.4925e-05 max_mem: 1775M\n"}
,{"stream_name":"stdout","time":374.662886654,"data":"\u001b[32m[09/23 07:41:10 d2.utils.events]: \u001b[0m eta: 0:04:01 iter: 319 total_loss: 1.412 loss_cls: 0.4156 loss_box_reg: 0.5481 loss_mask: 0.4122 loss_rpn_cls: 0.01921 loss_rpn_loc: 0.01239 time: 0.3642 last_time: 0.3551 data_time: 0.0103 last_data_time: 0.0065 lr: 7.992e-05 max_mem: 1775M\n"}
,{"stream_name":"stdout","time":382.170783334,"data":"\u001b[32m[09/23 07:41:17 d2.utils.events]: \u001b[0m eta: 0:03:54 iter: 339 total_loss: 1.266 loss_cls: 0.3341 loss_box_reg: 0.4788 loss_mask: 0.3911 loss_rpn_cls: 0.01888 loss_rpn_loc: 0.01569 time: 0.3649 last_time: 0.4293 data_time: 0.0080 last_data_time: 0.0070 lr: 8.4915e-05 max_mem: 1775M\n"}
,{"stream_name":"stdout","time":389.425823612,"data":"\u001b[32m[09/23 07:41:24 d2.utils.events]: \u001b[0m eta: 0:03:47 iter: 359 total_loss: 1.395 loss_cls: 0.3506 loss_box_reg: 0.5867 loss_mask: 0.3759 loss_rpn_cls: 0.01438 loss_rpn_loc: 0.01705 time: 0.3647 last_time: 0.3646 data_time: 0.0074 last_data_time: 0.0071 lr: 8.991e-05 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":396.96129169,"data":"\u001b[32m[09/23 07:41:32 d2.utils.events]: \u001b[0m eta: 0:03:40 iter: 379 total_loss: 1.451 loss_cls: 0.3727 loss_box_reg: 0.6039 loss_mask: 0.3999 loss_rpn_cls: 0.01364 loss_rpn_loc: 0.01788 time: 0.3653 last_time: 0.4154 data_time: 0.0070 last_data_time: 0.0067 lr: 9.4905e-05 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":404.823707244,"data":"\u001b[32m[09/23 07:41:40 d2.utils.events]: \u001b[0m eta: 0:03:34 iter: 399 total_loss: 1.315 loss_cls: 0.3367 loss_box_reg: 0.5276 loss_mask: 0.3453 loss_rpn_cls: 0.01492 loss_rpn_loc: 0.01715 time: 0.3666 last_time: 0.4236 data_time: 0.0112 last_data_time: 0.0087 lr: 9.99e-05 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":411.905664712,"data":"\u001b[32m[09/23 07:41:47 d2.utils.events]: \u001b[0m eta: 0:03:27 iter: 419 total_loss: 0.9786 loss_cls: 0.2303 loss_box_reg: 0.4012 loss_mask: 0.3317 loss_rpn_cls: 0.009277 loss_rpn_loc: 0.01368 time: 0.3660 last_time: 0.3196 data_time: 0.0081 last_data_time: 0.0076 lr: 0.0001049 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":419.540183238,"data":"\u001b[32m[09/23 07:41:55 d2.utils.events]: \u001b[0m eta: 0:03:21 iter: 439 total_loss: 1.285 loss_cls: 0.2976 loss_box_reg: 0.5277 loss_mask: 0.3637 loss_rpn_cls: 0.01374 loss_rpn_loc: 0.02255 time: 0.3667 last_time: 0.4135 data_time: 0.0069 last_data_time: 0.0070 lr: 0.00010989 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":427.026892669,"data":"\u001b[32m[09/23 07:42:02 d2.utils.events]: \u001b[0m eta: 0:03:14 iter: 459 total_loss: 1.119 loss_cls: 0.2653 loss_box_reg: 0.5093 loss_mask: 0.3336 loss_rpn_cls: 0.008255 loss_rpn_loc: 0.01522 time: 0.3670 last_time: 0.3390 data_time: 0.0081 last_data_time: 0.0072 lr: 0.00011489 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":434.509628645,"data":"\u001b[32m[09/23 07:42:09 d2.utils.events]: \u001b[0m eta: 0:03:08 iter: 479 total_loss: 1.243 loss_cls: 0.3047 loss_box_reg: 0.5412 loss_mask: 0.3295 loss_rpn_cls: 0.01302 loss_rpn_loc: 0.01568 time: 0.3673 last_time: 0.3210 data_time: 0.0090 last_data_time: 0.0100 lr: 0.00011988 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":442.176178234,"data":"\u001b[32m[09/23 07:42:17 d2.utils.events]: \u001b[0m eta: 0:03:00 iter: 499 total_loss: 1.142 loss_cls: 0.2688 loss_box_reg: 0.4826 loss_mask: 0.3046 loss_rpn_cls: 0.006692 loss_rpn_loc: 0.01597 time: 0.3678 last_time: 0.4091 data_time: 0.0070 last_data_time: 0.0064 lr: 0.00012488 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":449.602940172,"data":"\u001b[32m[09/23 07:42:25 d2.utils.events]: \u001b[0m eta: 0:02:53 iter: 519 total_loss: 1.065 loss_cls: 0.2476 loss_box_reg: 0.4258 loss_mask: 0.3209 loss_rpn_cls: 0.0138 loss_rpn_loc: 0.01544 time: 0.3680 last_time: 0.3954 data_time: 0.0083 last_data_time: 0.0073 lr: 0.00012987 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":457.112448665,"data":"\u001b[32m[09/23 07:42:32 d2.utils.events]: \u001b[0m eta: 0:02:46 iter: 539 total_loss: 0.9309 loss_cls: 0.1731 loss_box_reg: 0.4198 loss_mask: 0.2816 loss_rpn_cls: 0.004735 loss_rpn_loc: 0.01888 time: 0.3683 last_time: 0.3994 data_time: 0.0067 last_data_time: 0.0063 lr: 0.00013487 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":465.022043696,"data":"\u001b[32m[09/23 07:42:40 d2.utils.events]: \u001b[0m eta: 0:02:40 iter: 559 total_loss: 1.027 loss_cls: 0.2307 loss_box_reg: 0.4041 loss_mask: 0.3095 loss_rpn_cls: 0.01669 loss_rpn_loc: 0.02477 time: 0.3692 last_time: 0.4273 data_time: 0.0100 last_data_time: 0.0261 lr: 0.00013986 max_mem: 1776M\n"}
,{"stream_name":"stdout","time":472.342005965,"data":"\u001b[32m[09/23 07:42:47 d2.utils.events]: \u001b[0m eta: 0:02:32 iter: 579 total_loss: 0.7264 loss_cls: 0.1098 loss_box_reg: 0.2802 loss_mask: 0.2807 loss_rpn_cls: 0.003293 loss_rpn_loc: 0.01229 time: 0.3690 last_time: 0.3049 data_time: 0.0084 last_data_time: 0.0069 lr: 0.00014486 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":479.85336258,"data":"\u001b[32m[09/23 07:42:55 d2.utils.events]: \u001b[0m eta: 0:02:25 iter: 599 total_loss: 0.899 loss_cls: 0.2028 loss_box_reg: 0.329 loss_mask: 0.3195 loss_rpn_cls: 0.007076 loss_rpn_loc: 0.02576 time: 0.3693 last_time: 0.3022 data_time: 0.0079 last_data_time: 0.0075 lr: 0.00014985 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":487.280054506,"data":"\u001b[32m[09/23 07:43:02 d2.utils.events]: \u001b[0m eta: 0:02:18 iter: 619 total_loss: 0.8217 loss_cls: 0.1623 loss_box_reg: 0.3018 loss_mask: 0.2941 loss_rpn_cls: 0.005526 loss_rpn_loc: 0.02092 time: 0.3693 last_time: 0.4131 data_time: 0.0076 last_data_time: 0.0073 lr: 0.00015485 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":494.711325657,"data":"\u001b[32m[09/23 07:43:10 d2.utils.events]: \u001b[0m eta: 0:02:11 iter: 639 total_loss: 0.7626 loss_cls: 0.1449 loss_box_reg: 0.3171 loss_mask: 0.2855 loss_rpn_cls: 0.003396 loss_rpn_loc: 0.01711 time: 0.3694 last_time: 0.3385 data_time: 0.0072 last_data_time: 0.0071 lr: 0.00015984 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":502.406562878,"data":"\u001b[32m[09/23 07:43:17 d2.utils.events]: \u001b[0m eta: 0:02:03 iter: 659 total_loss: 0.8223 loss_cls: 0.1529 loss_box_reg: 0.319 loss_mask: 0.2761 loss_rpn_cls: 0.00508 loss_rpn_loc: 0.01968 time: 0.3698 last_time: 0.3346 data_time: 0.0082 last_data_time: 0.0088 lr: 0.00016484 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":510.053115581,"data":"\u001b[32m[09/23 07:43:25 d2.utils.events]: \u001b[0m eta: 0:01:56 iter: 679 total_loss: 0.6646 loss_cls: 0.1136 loss_box_reg: 0.2644 loss_mask: 0.2595 loss_rpn_cls: 0.005713 loss_rpn_loc: 0.01864 time: 0.3702 last_time: 0.3531 data_time: 0.0085 last_data_time: 0.0078 lr: 0.00016983 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":517.562705788,"data":"\u001b[32m[09/23 07:43:33 d2.utils.events]: \u001b[0m eta: 0:01:49 iter: 699 total_loss: 0.6694 loss_cls: 0.1057 loss_box_reg: 0.2457 loss_mask: 0.2652 loss_rpn_cls: 0.003795 loss_rpn_loc: 0.01363 time: 0.3703 last_time: 0.3294 data_time: 0.0076 last_data_time: 0.0089 lr: 0.00017483 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":524.91804221,"data":"\u001b[32m[09/23 07:43:40 d2.utils.events]: \u001b[0m eta: 0:01:42 iter: 719 total_loss: 0.8476 loss_cls: 0.1678 loss_box_reg: 0.311 loss_mask: 0.3076 loss_rpn_cls: 0.008928 loss_rpn_loc: 0.02535 time: 0.3702 last_time: 0.4312 data_time: 0.0072 last_data_time: 0.0072 lr: 0.00017982 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":532.605087723,"data":"\u001b[32m[09/23 07:43:47 d2.utils.events]: \u001b[0m eta: 0:01:35 iter: 739 total_loss: 0.6485 loss_cls: 0.09793 loss_box_reg: 0.2633 loss_mask: 0.2799 loss_rpn_cls: 0.008818 loss_rpn_loc: 0.01637 time: 0.3704 last_time: 0.4122 data_time: 0.0092 last_data_time: 0.0062 lr: 0.00018482 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":539.851856257,"data":"\u001b[32m[09/23 07:43:55 d2.utils.events]: \u001b[0m eta: 0:01:27 iter: 759 total_loss: 0.7775 loss_cls: 0.1542 loss_box_reg: 0.2954 loss_mask: 0.2675 loss_rpn_cls: 0.006361 loss_rpn_loc: 0.03081 time: 0.3703 last_time: 0.3897 data_time: 0.0079 last_data_time: 0.0067 lr: 0.00018981 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":547.255724779,"data":"\u001b[32m[09/23 07:44:02 d2.utils.events]: \u001b[0m eta: 0:01:20 iter: 779 total_loss: 0.5322 loss_cls: 0.07315 loss_box_reg: 0.2183 loss_mask: 0.2537 loss_rpn_cls: 0.002045 loss_rpn_loc: 0.01187 time: 0.3703 last_time: 0.3445 data_time: 0.0081 last_data_time: 0.0062 lr: 0.00019481 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":554.533396611,"data":"\u001b[32m[09/23 07:44:10 d2.utils.events]: \u001b[0m eta: 0:01:13 iter: 799 total_loss: 0.583 loss_cls: 0.1178 loss_box_reg: 0.2244 loss_mask: 0.2243 loss_rpn_cls: 0.002606 loss_rpn_loc: 0.01259 time: 0.3701 last_time: 0.3479 data_time: 0.0088 last_data_time: 0.0061 lr: 0.0001998 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":562.09889552,"data":"\u001b[32m[09/23 07:44:17 d2.utils.events]: \u001b[0m eta: 0:01:05 iter: 819 total_loss: 0.6812 loss_cls: 0.1063 loss_box_reg: 0.2592 loss_mask: 0.2674 loss_rpn_cls: 0.005045 loss_rpn_loc: 0.01705 time: 0.3703 last_time: 0.3368 data_time: 0.0104 last_data_time: 0.0068 lr: 0.0002048 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":569.577541326,"data":"\u001b[32m[09/23 07:44:25 d2.utils.events]: \u001b[0m eta: 0:00:58 iter: 839 total_loss: 0.6475 loss_cls: 0.1354 loss_box_reg: 0.2331 loss_mask: 0.2683 loss_rpn_cls: 0.003228 loss_rpn_loc: 0.01554 time: 0.3703 last_time: 0.3450 data_time: 0.0073 last_data_time: 0.0085 lr: 0.00020979 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":577.105613046,"data":"\u001b[32m[09/23 07:44:32 d2.utils.events]: \u001b[0m eta: 0:00:51 iter: 859 total_loss: 0.5261 loss_cls: 0.08092 loss_box_reg: 0.2062 loss_mask: 0.2242 loss_rpn_cls: 0.001237 loss_rpn_loc: 0.01276 time: 0.3705 last_time: 0.4097 data_time: 0.0084 last_data_time: 0.0081 lr: 0.00021479 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":584.639586156,"data":"\u001b[32m[09/23 07:44:40 d2.utils.events]: \u001b[0m eta: 0:00:43 iter: 879 total_loss: 0.5345 loss_cls: 0.07986 loss_box_reg: 0.2093 loss_mask: 0.1887 loss_rpn_cls: 0.0009999 loss_rpn_loc: 0.008154 time: 0.3706 last_time: 0.3908 data_time: 0.0076 last_data_time: 0.0079 lr: 0.00021978 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":592.133724965,"data":"\u001b[32m[09/23 07:44:47 d2.utils.events]: \u001b[0m eta: 0:00:36 iter: 899 total_loss: 0.6179 loss_cls: 0.1105 loss_box_reg: 0.2395 loss_mask: 0.2561 loss_rpn_cls: 0.008318 loss_rpn_loc: 0.01785 time: 0.3707 last_time: 0.3466 data_time: 0.0090 last_data_time: 0.0072 lr: 0.00022478 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":599.759886771,"data":"\u001b[32m[09/23 07:44:55 d2.utils.events]: \u001b[0m eta: 0:00:29 iter: 919 total_loss: 0.4821 loss_cls: 0.07783 loss_box_reg: 0.1655 loss_mask: 0.2053 loss_rpn_cls: 0.0013 loss_rpn_loc: 0.01239 time: 0.3709 last_time: 0.4113 data_time: 0.0079 last_data_time: 0.0068 lr: 0.00022977 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":607.564687644,"data":"\u001b[32m[09/23 07:45:03 d2.utils.events]: \u001b[0m eta: 0:00:22 iter: 939 total_loss: 0.5789 loss_cls: 0.1175 loss_box_reg: 0.2348 loss_mask: 0.2183 loss_rpn_cls: 0.002596 loss_rpn_loc: 0.01899 time: 0.3713 last_time: 0.3916 data_time: 0.0087 last_data_time: 0.0098 lr: 0.00023477 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":614.932708254,"data":"\u001b[32m[09/23 07:45:10 d2.utils.events]: \u001b[0m eta: 0:00:14 iter: 959 total_loss: 0.5084 loss_cls: 0.08297 loss_box_reg: 0.1746 loss_mask: 0.235 loss_rpn_cls: 0.002214 loss_rpn_loc: 0.01299 time: 0.3713 last_time: 0.3617 data_time: 0.0084 last_data_time: 0.0086 lr: 0.00023976 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":622.746722669,"data":"\u001b[32m[09/23 07:45:18 d2.utils.events]: \u001b[0m eta: 0:00:07 iter: 979 total_loss: 0.5914 loss_cls: 0.08434 loss_box_reg: 0.235 loss_mask: 0.2241 loss_rpn_cls: 0.002513 loss_rpn_loc: 0.01149 time: 0.3716 last_time: 0.3726 data_time: 0.0085 last_data_time: 0.0177 lr: 0.00024476 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":630.929186452,"data":"\u001b[32m[09/23 07:45:26 d2.utils.events]: \u001b[0m eta: 0:00:00 iter: 999 total_loss: 0.6494 loss_cls: 0.1022 loss_box_reg: 0.2411 loss_mask: 0.252 loss_rpn_cls: 0.002364 loss_rpn_loc: 0.0139 time: 0.3716 last_time: 0.3077 data_time: 0.0075 last_data_time: 0.0069 lr: 0.00024975 max_mem: 1777M\n"}
,{"stream_name":"stdout","time":630.930411314,"data":"\u001b[32m[09/23 07:45:26 d2.engine.hooks]: \u001b[0mOverall training speed: 998 iterations in 0:06:10 (0.3716 s / it)\n"}
,{"stream_name":"stdout","time":630.932104437,"data":"\u001b[32m[09/23 07:45:26 d2.engine.hooks]: \u001b[0mTotal training time: 0:06:25 (0:00:14 on hooks)\n"}
,{"stream_name":"stdout","time":631.852853369,"data":"\u001b[32m[09/23 07:45:27 d2.checkpoint.detection_checkpoint]: \u001b[0m[DetectionCheckpointer] Loading from /kaggle/working/outputs/model_final.pth ...\n"}
,{"stream_name":"stdout","time":633.854559424,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:45:29 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":633.854596514,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":633.854603187,"data":"\n"}
,{"stream_name":"stdout","time":633.855964849,"data":"\u001b[32m[09/23 07:45:29 d2.data.datasets.coco]: \u001b[0mLoaded 18 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/valid/valid.json\n"}
,{"stream_name":"stdout","time":633.862563388,"data":"\u001b[32m[09/23 07:45:29 d2.data.build]: \u001b[0mDistribution of instances among all 4 categories:\n"}
,{"stream_name":"stdout","time":633.862601189,"data":"\u001b[36m| category | #instances | category | #instances | category | #instances |\n"}
,{"stream_name":"stdout","time":633.862608844,"data":"|:-------------:|:-------------|:-----------|:-------------|:-----------|:-------------|\n"}
,{"stream_name":"stdout","time":633.862614688,"data":"| leaf, flowe.. | 0 | 0 | 27 | 1 | 19 |\n"}
,{"stream_name":"stdout","time":633.862620603,"data":"| 2 | 36 | | | | |\n"}
,{"stream_name":"stdout","time":633.862626214,"data":"| total | 82 | | | | |\u001b[0m\n"}
,{"stream_name":"stdout","time":633.864171798,"data":"\u001b[32m[09/23 07:45:29 d2.data.dataset_mapper]: \u001b[0m[DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')]\n"}
,{"stream_name":"stdout","time":633.865624594,"data":"\u001b[32m[09/23 07:45:29 d2.data.common]: \u001b[0mSerializing the dataset using: \u003cclass 'detectron2.data.common._TorchSerializedList'\u003e\n"}
,{"stream_name":"stdout","time":633.867186249,"data":"\u001b[32m[09/23 07:45:29 d2.data.common]: \u001b[0mSerializing 18 elements to byte tensors and concatenating them all ...\n"}
,{"stream_name":"stdout","time":633.868659769,"data":"\u001b[32m[09/23 07:45:29 d2.data.common]: \u001b[0mSerialized dataset takes 0.02 MiB\n"}
,{"stream_name":"stdout","time":633.870068823,"data":"\u001b[32m[09/23 07:45:29 d2.evaluation.evaluator]: \u001b[0mStart inference on 18 batches\n"}
,{"stream_name":"stdout","time":635.094665576,"data":"\u001b[32m[09/23 07:45:30 d2.evaluation.evaluator]: \u001b[0mInference done 11/18. Dataloading: 0.0016 s/iter. Inference: 0.0821 s/iter. Eval: 0.0064 s/iter. Total: 0.0901 s/iter. ETA=0:00:00\n"}
,{"stream_name":"stdout","time":635.766430367,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.evaluator]: \u001b[0mTotal inference time: 0:00:01.213719 (0.093363 s / iter per device, on 1 devices)\n"}
,{"stream_name":"stdout","time":635.769214269,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.evaluator]: \u001b[0mTotal inference pure compute time: 0:00:01 (0.080777 s / iter per device, on 1 devices)\n"}
,{"stream_name":"stdout","time":635.771225527,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mPreparing results for COCO format ...\n"}
,{"stream_name":"stdout","time":635.773198027,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mSaving results to ./outputs/coco_instances_results.json\n"}
,{"stream_name":"stdout","time":635.778019995,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mEvaluating predictions with unofficial COCO API...\n"}
,{"stream_name":"stdout","time":635.779417428,"data":"Loading and preparing results...\n"}
,{"stream_name":"stdout","time":635.779434434,"data":"DONE (t=0.00s)\n"}
,{"stream_name":"stdout","time":635.779440883,"data":"creating index...\n"}
,{"stream_name":"stdout","time":635.77944617,"data":"index created!\n"}
,{"stream_name":"stdout","time":635.779451855,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mEvaluate annotation type *bbox*\n"}
,{"stream_name":"stdout","time":635.789318341,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mCOCOeval_opt.evaluate() finished in 0.01 seconds.\n"}
,{"stream_name":"stdout","time":635.797159053,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mAccumulating evaluation results...\n"}
,{"stream_name":"stdout","time":635.807632373,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mCOCOeval_opt.accumulate() finished in 0.02 seconds.\n"}
,{"stream_name":"stdout","time":635.810643959,"data":" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.302\n"}
,{"stream_name":"stdout","time":635.810661179,"data":" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.474\n"}
,{"stream_name":"stdout","time":635.810671544,"data":" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.357\n"}
,{"stream_name":"stdout","time":635.810677171,"data":" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n"}
,{"stream_name":"stdout","time":635.810682026,"data":" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.304\n"}
,{"stream_name":"stdout","time":635.810686646,"data":" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.263\n"}
,{"stream_name":"stdout","time":635.810691178,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.138\n"}
,{"stream_name":"stdout","time":635.810695681,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.391\n"}
,{"stream_name":"stdout","time":635.810700604,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.392\n"}
,{"stream_name":"stdout","time":635.810705254,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n"}
,{"stream_name":"stdout","time":635.810710319,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.371\n"}
,{"stream_name":"stdout","time":635.810714862,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.364\n"}
,{"stream_name":"stdout","time":635.810719904,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mEvaluation results for bbox: \n"}
,{"stream_name":"stdout","time":635.810725438,"data":"| AP | AP50 | AP75 | APs | APm | APl |\n"}
,{"stream_name":"stdout","time":635.81073265,"data":"|:------:|:------:|:------:|:-----:|:------:|:------:|\n"}
,{"stream_name":"stdout","time":635.81074006,"data":"| 30.219 | 47.387 | 35.729 | nan | 30.435 | 26.317 |\n"}
,{"stream_name":"stdout","time":635.812444438,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mSome metrics cannot be computed and is shown as NaN.\n"}
,{"stream_name":"stdout","time":635.814914009,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mPer-category bbox AP: \n"}
,{"stream_name":"stdout","time":635.814931885,"data":"| category | AP | category | AP | category | AP |\n"}
,{"stream_name":"stdout","time":635.814941054,"data":"|:-----------------------|:-------|:-----------|:-------|:-----------|:-------|\n"}
,{"stream_name":"stdout","time":635.814950236,"data":"| leaf, flower and fruit | nan | 0 | 11.429 | 1 | 39.127 |\n"}
,{"stream_name":"stdout","time":635.814955966,"data":"| 2 | 40.100 | | | | |\n"}
,{"stream_name":"stdout","time":635.831025164,"data":"Loading and preparing results...\n"}
,{"stream_name":"stdout","time":635.831060554,"data":"DONE (t=0.00s)\n"}
,{"stream_name":"stdout","time":635.831066509,"data":"creating index...\n"}
,{"stream_name":"stdout","time":635.831071302,"data":"index created!\n"}
,{"stream_name":"stdout","time":635.831076148,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mEvaluate annotation type *segm*\n"}
,{"stream_name":"stdout","time":635.832967364,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mCOCOeval_opt.evaluate() finished in 0.01 seconds.\n"}
,{"stream_name":"stdout","time":635.834387149,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mAccumulating evaluation results...\n"}
,{"stream_name":"stdout","time":635.849730149,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mCOCOeval_opt.accumulate() finished in 0.02 seconds.\n"}
,{"stream_name":"stdout","time":635.852968257,"data":" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.268\n"}
,{"stream_name":"stdout","time":635.853013325,"data":" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.482\n"}
,{"stream_name":"stdout","time":635.85302032,"data":" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.266\n"}
,{"stream_name":"stdout","time":635.853026725,"data":" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n"}
,{"stream_name":"stdout","time":635.853032566,"data":" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.290\n"}
,{"stream_name":"stdout","time":635.853037529,"data":" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.233\n"}
,{"stream_name":"stdout","time":635.853043059,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.134\n"}
,{"stream_name":"stdout","time":635.853052344,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.349\n"}
,{"stream_name":"stdout","time":635.853058969,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.350\n"}
,{"stream_name":"stdout","time":635.853080544,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n"}
,{"stream_name":"stdout","time":635.853086828,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.347\n"}
,{"stream_name":"stdout","time":635.853104345,"data":" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.324\n"}
,{"stream_name":"stdout","time":635.853111104,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mEvaluation results for segm: \n"}
,{"stream_name":"stdout","time":635.853117005,"data":"| AP | AP50 | AP75 | APs | APm | APl |\n"}
,{"stream_name":"stdout","time":635.853122229,"data":"|:------:|:------:|:------:|:-----:|:------:|:------:|\n"}
,{"stream_name":"stdout","time":635.853127204,"data":"| 26.769 | 48.197 | 26.573 | nan | 29.003 | 23.334 |\n"}
,{"stream_name":"stdout","time":635.854207133,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mSome metrics cannot be computed and is shown as NaN.\n"}
,{"stream_name":"stdout","time":635.85871157,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mPer-category segm AP: \n"}
,{"stream_name":"stdout","time":635.858754408,"data":"| category | AP | category | AP | category | AP |\n"}
,{"stream_name":"stdout","time":635.858761686,"data":"|:-----------------------|:-------|:-----------|:-------|:-----------|:-------|\n"}
,{"stream_name":"stdout","time":635.858767208,"data":"| leaf, flower and fruit | nan | 0 | 11.675 | 1 | 31.041 |\n"}
,{"stream_name":"stdout","time":635.858772523,"data":"| 2 | 37.590 | | | | |\n"}
,{"stream_name":"stdout","time":635.860120683,"data":"OrderedDict([('bbox', {'AP': 30.218943392039694, 'AP50': 47.386900130198846, 'AP75': 35.72921800473737, 'APs': nan, 'APm': 30.43451625382318, 'APl': 26.31694060377811, 'AP-leaf, flower and fruit': nan, 'AP-0': 11.42892373885882, 'AP-1': 39.12745560270313, 'AP-2': 40.10045083455714}), ('segm', {'AP': 26.768528027464377, 'AP50': 48.19729533929002, 'AP75': 26.573458292849743, 'APs': nan, 'APm': 29.0032162556915, 'APl': 23.334085433968955, 'AP-leaf, flower and fruit': nan, 'AP-0': 11.674782020116336, 'AP-1': 31.04055405540554, 'AP-2': 37.59024800687124})])\n"}
,{"stream_name":"stderr","time":641.251753977,"data":"/opt/conda/lib/python3.10/site-packages/traitlets/traitlets.py:2930: FutureWarning: --Exporter.preprocessors=[\"remove_papermill_header.RemovePapermillHeader\"] for containers is deprecated in traitlets 5.0. You can pass `--Exporter.preprocessors item` ... multiple times to add items to a list.\n"}
,{"stream_name":"stderr","time":641.252033612,"data":" warn(\n"}
,{"stream_name":"stderr","time":641.271251502,"data":"[NbConvertApp] WARNING | Config option `kernel_spec_manager_class` not recognized by `NbConvertApp`.\n"}
,{"stream_name":"stderr","time":641.299639329,"data":"[NbConvertApp] Converting notebook __notebook__.ipynb to notebook\n"}
,{"stream_name":"stderr","time":641.812192464,"data":"[NbConvertApp] Writing 1563115 bytes to __notebook__.ipynb\n"}
,{"stream_name":"stderr","time":643.508675438,"data":"/opt/conda/lib/python3.10/site-packages/traitlets/traitlets.py:2930: FutureWarning: --Exporter.preprocessors=[\"nbconvert.preprocessors.ExtractOutputPreprocessor\"] for containers is deprecated in traitlets 5.0. You can pass `--Exporter.preprocessors item` ... multiple times to add items to a list.\n"}
,{"stream_name":"stderr","time":643.508732164,"data":" warn(\n"}
,{"stream_name":"stderr","time":643.511626803,"data":"[NbConvertApp] WARNING | Config option `kernel_spec_manager_class` not recognized by `NbConvertApp`.\n"}
,{"stream_name":"stderr","time":643.556443524,"data":"[NbConvertApp] Converting notebook __notebook__.ipynb to html\n"}
,{"stream_name":"stderr","time":644.538437008,"data":"[NbConvertApp] Support files will be in __results___files/\n"}
,{"stream_name":"stderr","time":644.538518612,"data":"[NbConvertApp] Making directory __results___files\n"}
,{"stream_name":"stderr","time":644.539060619,"data":"[NbConvertApp] Making directory __results___files\n"}
,{"stream_name":"stderr","time":644.539504448,"data":"[NbConvertApp] Making directory __results___files\n"}
,{"stream_name":"stderr","time":644.540311438,"data":"[NbConvertApp] Writing 357130 bytes to __results__.html\n"}
] |