File size: 97,046 Bytes
9f1acbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
[{"stream_name":"stdout","time":13.800549499,"data":"Collecting git+https://github.com/facebookresearch/detectron2.git\r\n"}
,{"stream_name":"stdout","time":13.80060226,"data":"  Cloning https://github.com/facebookresearch/detectron2.git to /tmp/pip-req-build-bmi0l3o7\r\n"}
,{"stream_name":"stdout","time":13.850537072,"data":"  Running command git clone --filter=blob:none --quiet https://github.com/facebookresearch/detectron2.git /tmp/pip-req-build-bmi0l3o7\r\n"}
,{"stream_name":"stdout","time":15.828396187,"data":"  Resolved https://github.com/facebookresearch/detectron2.git to commit 8c4a333ceb8df05348759443d0206302485890e0\r\n"}
,{"stream_name":"stdout","time":26.694396295,"data":"  Preparing metadata (setup.py) ... \u001b[?25ldone\r\n"}
,{"stream_name":"stdout","time":26.694424157,"data":"\u001b[?25hRequirement already satisfied: Pillow\u003e=7.1 in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (9.5.0)\r\n"}
,{"stream_name":"stdout","time":26.694431161,"data":"Requirement already satisfied: matplotlib in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (3.7.2)\r\n"}
,{"stream_name":"stdout","time":26.795896143,"data":"Collecting pycocotools\u003e=2.0.2 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":26.847171206,"data":"  Downloading pycocotools-2.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426 kB)\r\n"}
,{"stream_name":"stdout","time":26.949470176,"data":"\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/426.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m307.2/426.2 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m426.2/426.2 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":26.949521699,"data":"\u001b[?25hRequirement already satisfied: termcolor\u003e=1.1 in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (2.3.0)\r\n"}
,{"stream_name":"stdout","time":27.000086278,"data":"Collecting yacs\u003e=0.1.8 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":27.000219986,"data":"  Downloading yacs-0.1.8-py3-none-any.whl (14 kB)\r\n"}
,{"stream_name":"stdout","time":27.000226742,"data":"Requirement already satisfied: tabulate in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (0.9.0)\r\n"}
,{"stream_name":"stdout","time":27.000232155,"data":"Requirement already satisfied: cloudpickle in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (2.2.1)\r\n"}
,{"stream_name":"stdout","time":27.000237341,"data":"Requirement already satisfied: tqdm\u003e4.29.0 in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (4.66.1)\r\n"}
,{"stream_name":"stdout","time":27.000244246,"data":"Requirement already satisfied: tensorboard in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (2.12.3)\r\n"}
,{"stream_name":"stdout","time":27.101876277,"data":"Collecting fvcore\u003c0.1.6,\u003e=0.1.5 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":27.101900256,"data":"  Downloading fvcore-0.1.5.post20221221.tar.gz (50 kB)\r\n"}
,{"stream_name":"stdout","time":27.101907338,"data":"\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/50.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.2/50.2 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":27.913782362,"data":"\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25ldone\r\n"}
,{"stream_name":"stdout","time":27.964242158,"data":"\u001b[?25hCollecting iopath\u003c0.1.10,\u003e=0.1.7 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":27.964265953,"data":"  Downloading iopath-0.1.9-py3-none-any.whl (27 kB)\r\n"}
,{"stream_name":"stdout","time":28.117040412,"data":"Collecting omegaconf\u003c2.4,\u003e=2.1 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":28.117076197,"data":"  Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB)\r\n"}
,{"stream_name":"stdout","time":28.117083173,"data":"\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/79.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.5/79.5 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":28.168433409,"data":"\u001b[?25hCollecting hydra-core\u003e=1.1 (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":28.220127501,"data":"  Downloading hydra_core-1.3.2-py3-none-any.whl (154 kB)\r\n"}
,{"stream_name":"stdout","time":28.220149554,"data":"\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/154.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.5/154.5 kB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":28.321818222,"data":"\u001b[?25hCollecting black (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":28.373153964,"data":"  Downloading black-23.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB)\r\n"}
,{"stream_name":"stdout","time":28.42381878,"data":"\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/1.6 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m69.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m39.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":28.423856743,"data":"\u001b[?25hRequirement already satisfied: packaging in /opt/conda/lib/python3.10/site-packages (from detectron2==0.6) (21.3)\r\n"}
,{"stream_name":"stdout","time":28.423862996,"data":"Requirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from fvcore\u003c0.1.6,\u003e=0.1.5-\u003edetectron2==0.6) (1.23.5)\r\n"}
,{"stream_name":"stdout","time":28.423868875,"data":"Requirement already satisfied: pyyaml\u003e=5.1 in /opt/conda/lib/python3.10/site-packages (from fvcore\u003c0.1.6,\u003e=0.1.5-\u003edetectron2==0.6) (6.0)\r\n"}
,{"stream_name":"stdout","time":28.475184929,"data":"Collecting antlr4-python3-runtime==4.9.* (from hydra-core\u003e=1.1-\u003edetectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":28.475225062,"data":"  Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB)\r\n"}
,{"stream_name":"stdout","time":28.527590455,"data":"\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/117.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.0/117.0 kB\u001b[0m \u001b[31m9.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":29.33744428,"data":"\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25ldone\r\n"}
,{"stream_name":"stdout","time":29.439532864,"data":"\u001b[?25hCollecting portalocker (from iopath\u003c0.1.10,\u003e=0.1.7-\u003edetectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":29.439553947,"data":"  Downloading portalocker-2.8.2-py3-none-any.whl (17 kB)\r\n"}
,{"stream_name":"stdout","time":29.492629557,"data":"Requirement already satisfied: contourpy\u003e=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (1.1.0)\r\n"}
,{"stream_name":"stdout","time":29.492660448,"data":"Requirement already satisfied: cycler\u003e=0.10 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (0.11.0)\r\n"}
,{"stream_name":"stdout","time":29.492667944,"data":"Requirement already satisfied: fonttools\u003e=4.22.0 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (4.40.0)\r\n"}
,{"stream_name":"stdout","time":29.492674789,"data":"Requirement already satisfied: kiwisolver\u003e=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (1.4.4)\r\n"}
,{"stream_name":"stdout","time":29.492680981,"data":"Requirement already satisfied: pyparsing\u003c3.1,\u003e=2.3.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (3.0.9)\r\n"}
,{"stream_name":"stdout","time":29.492687499,"data":"Requirement already satisfied: python-dateutil\u003e=2.7 in /opt/conda/lib/python3.10/site-packages (from matplotlib-\u003edetectron2==0.6) (2.8.2)\r\n"}
,{"stream_name":"stdout","time":29.543539608,"data":"Requirement already satisfied: click\u003e=8.0.0 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (8.1.7)\r\n"}
,{"stream_name":"stdout","time":29.543565355,"data":"Requirement already satisfied: mypy-extensions\u003e=0.4.3 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (1.0.0)\r\n"}
,{"stream_name":"stdout","time":29.645226589,"data":"Collecting packaging (from detectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":29.64524657,"data":"  Downloading packaging-23.1-py3-none-any.whl (48 kB)\r\n"}
,{"stream_name":"stdout","time":29.645261524,"data":"\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/48.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m48.9/48.9 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n"}
,{"stream_name":"stdout","time":29.695664356,"data":"\u001b[?25hCollecting pathspec\u003e=0.9.0 (from black-\u003edetectron2==0.6)\r\n"}
,{"stream_name":"stdout","time":29.695683454,"data":"  Downloading pathspec-0.11.2-py3-none-any.whl (29 kB)\r\n"}
,{"stream_name":"stdout","time":29.747370869,"data":"Requirement already satisfied: platformdirs\u003e=2 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (3.10.0)\r\n"}
,{"stream_name":"stdout","time":29.747404532,"data":"Requirement already satisfied: tomli\u003e=1.1.0 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (2.0.1)\r\n"}
,{"stream_name":"stdout","time":29.747429754,"data":"Requirement already satisfied: typing-extensions\u003e=4.0.1 in /opt/conda/lib/python3.10/site-packages (from black-\u003edetectron2==0.6) (4.6.3)\r\n"}
,{"stream_name":"stdout","time":29.747435658,"data":"Requirement already satisfied: absl-py\u003e=0.4 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (1.4.0)\r\n"}
,{"stream_name":"stdout","time":29.74744468,"data":"Requirement already satisfied: grpcio\u003e=1.48.2 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (1.51.1)\r\n"}
,{"stream_name":"stdout","time":29.747450082,"data":"Requirement already satisfied: google-auth\u003c3,\u003e=1.6.3 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (2.20.0)\r\n"}
,{"stream_name":"stdout","time":29.799535672,"data":"Requirement already satisfied: google-auth-oauthlib\u003c1.1,\u003e=0.5 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (1.0.0)\r\n"}
,{"stream_name":"stdout","time":29.79955317,"data":"Requirement already satisfied: markdown\u003e=2.6.8 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (3.4.3)\r\n"}
,{"stream_name":"stdout","time":29.799559979,"data":"Requirement already satisfied: protobuf\u003e=3.19.6 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (3.20.3)\r\n"}
,{"stream_name":"stdout","time":29.799573088,"data":"Requirement already satisfied: requests\u003c3,\u003e=2.21.0 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (2.31.0)\r\n"}
,{"stream_name":"stdout","time":29.799581193,"data":"Requirement already satisfied: setuptools\u003e=41.0.0 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (68.0.0)\r\n"}
,{"stream_name":"stdout","time":29.79958711,"data":"Requirement already satisfied: tensorboard-data-server\u003c0.8.0,\u003e=0.7.0 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (0.7.1)\r\n"}
,{"stream_name":"stdout","time":29.799592979,"data":"Requirement already satisfied: werkzeug\u003e=1.0.1 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (2.3.7)\r\n"}
,{"stream_name":"stdout","time":29.799598503,"data":"Requirement already satisfied: wheel\u003e=0.26 in /opt/conda/lib/python3.10/site-packages (from tensorboard-\u003edetectron2==0.6) (0.40.0)\r\n"}
,{"stream_name":"stdout","time":29.901994492,"data":"Requirement already satisfied: cachetools\u003c6.0,\u003e=2.0.0 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (4.2.4)\r\n"}
,{"stream_name":"stdout","time":29.902019099,"data":"Requirement already satisfied: pyasn1-modules\u003e=0.2.1 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (0.2.7)\r\n"}
,{"stream_name":"stdout","time":29.902030352,"data":"Requirement already satisfied: rsa\u003c5,\u003e=3.1.4 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (4.9)\r\n"}
,{"stream_name":"stdout","time":29.90203704,"data":"Requirement already satisfied: six\u003e=1.9.0 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (1.16.0)\r\n"}
,{"stream_name":"stdout","time":29.902055856,"data":"Requirement already satisfied: urllib3\u003c2.0 in /opt/conda/lib/python3.10/site-packages (from google-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (1.26.15)\r\n"}
,{"stream_name":"stdout","time":29.952776028,"data":"Requirement already satisfied: requests-oauthlib\u003e=0.7.0 in /opt/conda/lib/python3.10/site-packages (from google-auth-oauthlib\u003c1.1,\u003e=0.5-\u003etensorboard-\u003edetectron2==0.6) (1.3.1)\r\n"}
,{"stream_name":"stdout","time":30.054635326,"data":"Requirement already satisfied: charset-normalizer\u003c4,\u003e=2 in /opt/conda/lib/python3.10/site-packages (from requests\u003c3,\u003e=2.21.0-\u003etensorboard-\u003edetectron2==0.6) (3.1.0)\r\n"}
,{"stream_name":"stdout","time":30.054655378,"data":"Requirement already satisfied: idna\u003c4,\u003e=2.5 in /opt/conda/lib/python3.10/site-packages (from requests\u003c3,\u003e=2.21.0-\u003etensorboard-\u003edetectron2==0.6) (3.4)\r\n"}
,{"stream_name":"stdout","time":30.054668613,"data":"Requirement already satisfied: certifi\u003e=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests\u003c3,\u003e=2.21.0-\u003etensorboard-\u003edetectron2==0.6) (2023.7.22)\r\n"}
,{"stream_name":"stdout","time":30.105753386,"data":"Requirement already satisfied: MarkupSafe\u003e=2.1.1 in /opt/conda/lib/python3.10/site-packages (from werkzeug\u003e=1.0.1-\u003etensorboard-\u003edetectron2==0.6) (2.1.3)\r\n"}
,{"stream_name":"stdout","time":30.207797875,"data":"Requirement already satisfied: pyasn1\u003c0.5.0,\u003e=0.4.6 in /opt/conda/lib/python3.10/site-packages (from pyasn1-modules\u003e=0.2.1-\u003egoogle-auth\u003c3,\u003e=1.6.3-\u003etensorboard-\u003edetectron2==0.6) (0.4.8)\r\n"}
,{"stream_name":"stdout","time":30.20781625,"data":"Requirement already satisfied: oauthlib\u003e=3.0.0 in /opt/conda/lib/python3.10/site-packages (from requests-oauthlib\u003e=0.7.0-\u003egoogle-auth-oauthlib\u003c1.1,\u003e=0.5-\u003etensorboard-\u003edetectron2==0.6) (3.2.2)\r\n"}
,{"stream_name":"stdout","time":30.310920006,"data":"Building wheels for collected packages: detectron2, fvcore, antlr4-python3-runtime\r\n"}
,{"stream_name":"stdout","time":201.216497586,"data":"  Building wheel for detectron2 (setup.py) ... \u001b[?25l-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \bdone\r\n"}
,{"stream_name":"stdout","time":201.216546505,"data":"\u001b[?25h  Created wheel for detectron2: filename=detectron2-0.6-cp310-cp310-linux_x86_64.whl size=1255108 sha256=c1bb4c192a8a85f1c87b6eff3d9a1bcc8cb87afba91bb90713b6d52f7d2df0de\r\n"}
,{"stream_name":"stdout","time":201.216554265,"data":"  Stored in directory: /tmp/pip-ephem-wheel-cache-94a0tk58/wheels/47/e5/15/94c80df2ba85500c5d76599cc307c0a7079d0e221bb6fc4375\r\n"}
,{"stream_name":"stdout","time":202.484371077,"data":"  Building wheel for fvcore (setup.py) ... \u001b[?25l-\b \bdone\r\n"}
,{"stream_name":"stdout","time":202.484412358,"data":"\u001b[?25h  Created wheel for fvcore: filename=fvcore-0.1.5.post20221221-py3-none-any.whl size=61405 sha256=bbcfeea57f018330174c976c074113dedf0a54d49dc1e2e15cc21ebd5d4805e8\r\n"}
,{"stream_name":"stdout","time":202.484420144,"data":"  Stored in directory: /root/.cache/pip/wheels/01/c0/af/77c1cf53a1be9e42a52b48e5af2169d40ec2e89f7362489dd0\r\n"}
,{"stream_name":"stdout","time":203.802844341,"data":"  Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l-\b \bdone\r\n"}
,{"stream_name":"stdout","time":203.802882933,"data":"\u001b[?25h  Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=9dc6457d743afbce3116c7471223a132c614f7213c1f42c7b1d3e2e6ebbab799\r\n"}
,{"stream_name":"stdout","time":203.802890735,"data":"  Stored in directory: /root/.cache/pip/wheels/12/93/dd/1f6a127edc45659556564c5730f6d4e300888f4bca2d4c5a88\r\n"}
,{"stream_name":"stdout","time":203.802910449,"data":"Successfully built detectron2 fvcore antlr4-python3-runtime\r\n"}
,{"stream_name":"stdout","time":215.46712805,"data":"Installing collected packages: antlr4-python3-runtime, yacs, portalocker, pathspec, packaging, omegaconf, iopath, hydra-core, black, pycocotools, fvcore, detectron2\r\n"}
,{"stream_name":"stdout","time":215.669267295,"data":"  Attempting uninstall: packaging\r\n"}
,{"stream_name":"stdout","time":215.669311267,"data":"    Found existing installation: packaging 21.3\r\n"}
,{"stream_name":"stdout","time":215.66931776,"data":"    Uninstalling packaging-21.3:\r\n"}
,{"stream_name":"stdout","time":215.72093058,"data":"      Successfully uninstalled packaging-21.3\r\n"}
,{"stream_name":"stdout","time":217.038332118,"data":"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n"}
,{"stream_name":"stdout","time":217.038369214,"data":"cudf 23.8.0 requires cupy-cuda11x\u003e=12.0.0, which is not installed.\r\n"}
,{"stream_name":"stdout","time":217.038380177,"data":"cuml 23.8.0 requires cupy-cuda11x\u003e=12.0.0, which is not installed.\r\n"}
,{"stream_name":"stdout","time":217.038387024,"data":"dask-cudf 23.8.0 requires cupy-cuda11x\u003e=12.0.0, which is not installed.\r\n"}
,{"stream_name":"stdout","time":217.038392055,"data":"cudf 23.8.0 requires pandas\u003c1.6.0dev0,\u003e=1.3, but you have pandas 2.0.2 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038397376,"data":"cudf 23.8.0 requires protobuf\u003c5,\u003e=4.21, but you have protobuf 3.20.3 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038402616,"data":"cuml 23.8.0 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.03840767,"data":"dask-cuda 23.8.0 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038412866,"data":"dask-cuda 23.8.0 requires pandas\u003c1.6.0dev0,\u003e=1.3, but you have pandas 2.0.2 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038417787,"data":"dask-cudf 23.8.0 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.03842299,"data":"dask-cudf 23.8.0 requires pandas\u003c1.6.0dev0,\u003e=1.3, but you have pandas 2.0.2 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038427905,"data":"distributed 2023.7.1 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038433206,"data":"google-cloud-bigquery 2.34.4 requires packaging\u003c22.0dev,\u003e=14.3, but you have packaging 23.1 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038438437,"data":"jupyterlab-lsp 4.2.0 requires jupyter-lsp\u003e=2.0.0, but you have jupyter-lsp 1.5.1 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038443813,"data":"momepy 0.6.0 requires shapely\u003e=2, but you have shapely 1.8.5.post1 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038449692,"data":"pymc3 3.11.5 requires numpy\u003c1.22.2,\u003e=1.15.0, but you have numpy 1.23.5 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038459679,"data":"pymc3 3.11.5 requires scipy\u003c1.8.0,\u003e=1.7.3, but you have scipy 1.11.2 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038469082,"data":"raft-dask 23.8.0 requires dask==2023.7.1, but you have dask 2023.9.0 which is incompatible.\r\n"}
,{"stream_name":"stdout","time":217.038487331,"data":"ydata-profiling 4.3.1 requires scipy\u003c1.11,\u003e=1.4.1, but you have scipy 1.11.2 which is incompatible.\u001b[0m\u001b[31m\r\n"}
,{"stream_name":"stdout","time":217.038494464,"data":"\u001b[0mSuccessfully installed antlr4-python3-runtime-4.9.3 black-23.9.1 detectron2-0.6 fvcore-0.1.5.post20221221 hydra-core-1.3.2 iopath-0.1.9 omegaconf-2.3.0 packaging-23.1 pathspec-0.11.2 portalocker-2.8.2 pycocotools-2.0.7 yacs-0.1.8\r\n"}
,{"stream_name":"stdout","time":219.774063631,"data":"2.0.0 True\n"}
,{"stream_name":"stdout","time":220.700549514,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":220.700602938,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":220.700611439,"data":"\n"}
,{"stream_name":"stdout","time":220.702501643,"data":"\u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0mLoaded 123 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/train/train.json\n"}
,{"stream_name":"stdout","time":220.744890243,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":220.744911035,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":220.744927809,"data":"\n"}
,{"stream_name":"stdout","time":220.746546326,"data":"\u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0mLoaded 123 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/train/train.json\n"}
,{"stream_name":"stdout","time":220.788803161,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":220.788823346,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":220.788830261,"data":"\n"}
,{"stream_name":"stdout","time":220.789918143,"data":"\u001b[32m[09/23 07:38:36 d2.data.datasets.coco]: \u001b[0mLoaded 18 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/valid/valid.json\n"}
,{"stream_name":"stdout","time":227.179968614,"data":"\u001b[32m[09/23 07:38:42 d2.engine.defaults]: \u001b[0mModel:\n"}
,{"stream_name":"stdout","time":227.180007033,"data":"GeneralizedRCNN(\n"}
,{"stream_name":"stdout","time":227.180015259,"data":"  (backbone): FPN(\n"}
,{"stream_name":"stdout","time":227.180020811,"data":"    (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180026353,"data":"    (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180031327,"data":"    (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180037021,"data":"    (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180041947,"data":"    (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180046859,"data":"    (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180051985,"data":"    (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180056954,"data":"    (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"}
,{"stream_name":"stdout","time":227.180072911,"data":"    (top_block): LastLevelMaxPool()\n"}
,{"stream_name":"stdout","time":227.180077739,"data":"    (bottom_up): ResNet(\n"}
,{"stream_name":"stdout","time":227.180084569,"data":"      (stem): BasicStem(\n"}
,{"stream_name":"stdout","time":227.180105523,"data":"        (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180113641,"data":"          3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False\n"}
,{"stream_name":"stdout","time":227.180118051,"data":"          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180123293,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180128394,"data":"      )\n"}
,{"stream_name":"stdout","time":227.180132861,"data":"      (res2): Sequential(\n"}
,{"stream_name":"stdout","time":227.180137663,"data":"        (0): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180142884,"data":"          (shortcut): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180147615,"data":"            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180152143,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18015687,"data":"          )\n"}
,{"stream_name":"stdout","time":227.18016138,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180165908,"data":"            64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180171071,"data":"            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180176042,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180180789,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180187851,"data":"            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180192613,"data":"            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180197731,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180203034,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180207967,"data":"            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180213024,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180218341,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180223163,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180227909,"data":"        (1): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180232924,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180237973,"data":"            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180243241,"data":"            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180248315,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180253167,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.18026029,"data":"            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180265617,"data":"            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180282245,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180286668,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180291644,"data":"            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180301924,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180306778,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180311389,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180315953,"data":"        (2): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180320733,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180325365,"data":"            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.1803301,"data":"            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180335192,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180339828,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180344423,"data":"            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.18034927,"data":"            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180354118,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180358687,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180363411,"data":"            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180368875,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180373783,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180378451,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180383843,"data":"      )\n"}
,{"stream_name":"stdout","time":227.180388536,"data":"      (res3): Sequential(\n"}
,{"stream_name":"stdout","time":227.18039321,"data":"        (0): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180398469,"data":"          (shortcut): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180403798,"data":"            256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.180408623,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180413364,"data":"          )\n"}
,{"stream_name":"stdout","time":227.18041866,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.18042418,"data":"            256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.180428929,"data":"            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180434756,"data":"          )\n"}
,{"stream_name":"stdout","time":227.18043941,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180444084,"data":"            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180449185,"data":"            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180454053,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180459049,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180463752,"data":"            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180469139,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180473977,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180480028,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180488874,"data":"        (1): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180493769,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180506633,"data":"            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.18051207,"data":"            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180516953,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180521744,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180526465,"data":"            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180531405,"data":"            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18053795,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180542618,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180547357,"data":"            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180552208,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180557098,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180561944,"data":"        )\n"}
,{"stream_name":"stdout","time":227.1805664,"data":"        (2): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.18057115,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180575763,"data":"            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180580599,"data":"            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180585333,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180590415,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180595183,"data":"            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180600173,"data":"            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180604947,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180610435,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180615085,"data":"            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180619835,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180625462,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180630042,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180634662,"data":"        (3): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180640148,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180644815,"data":"            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180649923,"data":"            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180654786,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180659695,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180664411,"data":"            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180670372,"data":"            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18067983,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180684519,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180689705,"data":"            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180700005,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180704891,"data":"          )\n"}
,{"stream_name":"stdout","time":227.18070948,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180714443,"data":"      )\n"}
,{"stream_name":"stdout","time":227.180718966,"data":"      (res4): Sequential(\n"}
,{"stream_name":"stdout","time":227.180723353,"data":"        (0): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180728198,"data":"          (shortcut): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180732851,"data":"            512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.180737728,"data":"            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180742506,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180747193,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180751991,"data":"            512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.180757062,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180762048,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180766557,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.18077108,"data":"            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180776155,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180781206,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180786045,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180791662,"data":"            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180797355,"data":"            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180802206,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180806824,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180811377,"data":"        (1): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180816235,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180820949,"data":"            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180825913,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180830626,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180835287,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180839938,"data":"            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180844728,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180849879,"data":"          )\n"}
,{"stream_name":"stdout","time":227.18085443,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180859075,"data":"            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180864006,"data":"            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180875643,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180880301,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180884996,"data":"        (2): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.18088957,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180894262,"data":"            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.18089929,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180903955,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180908812,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180913675,"data":"            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180918443,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180923131,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180927761,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180932395,"data":"            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180937224,"data":"            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180942078,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180946653,"data":"        )\n"}
,{"stream_name":"stdout","time":227.180951224,"data":"        (3): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.180956201,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180960857,"data":"            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180966914,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18097187,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180976406,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.180981079,"data":"            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.180986389,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.180991115,"data":"          )\n"}
,{"stream_name":"stdout","time":227.180995671,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181000226,"data":"            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181005248,"data":"            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181010191,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181014824,"data":"        )\n"}
,{"stream_name":"stdout","time":227.181019346,"data":"        (4): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181023859,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181028565,"data":"            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181033696,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181038536,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181043588,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181048625,"data":"            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181058514,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181063493,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181067956,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181072521,"data":"            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181077503,"data":"            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181082536,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181087066,"data":"        )\n"}
,{"stream_name":"stdout","time":227.181102295,"data":"        (5): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181108497,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181113243,"data":"            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181118186,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181122985,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181127606,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181132206,"data":"            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181138041,"data":"            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181142835,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181147444,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181169302,"data":"            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181174493,"data":"            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181179363,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181184361,"data":"        )\n"}
,{"stream_name":"stdout","time":227.181189231,"data":"      )\n"}
,{"stream_name":"stdout","time":227.181194132,"data":"      (res5): Sequential(\n"}
,{"stream_name":"stdout","time":227.18119915,"data":"        (0): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181204208,"data":"          (shortcut): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181209271,"data":"            1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.18121447,"data":"            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181219765,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181225295,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181230167,"data":"            1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False\n"}
,{"stream_name":"stdout","time":227.181235147,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181240345,"data":"          )\n"}
,{"stream_name":"stdout","time":227.1812452,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181250229,"data":"            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181255323,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18126061,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181265673,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181275615,"data":"            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181280497,"data":"            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181285533,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181290529,"data":"        )\n"}
,{"stream_name":"stdout","time":227.181295393,"data":"        (1): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181300267,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181305406,"data":"            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181310517,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.18131568,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181320611,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181326367,"data":"            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181331657,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181336564,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181341456,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181346381,"data":"            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181351864,"data":"            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181356955,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181361823,"data":"        )\n"}
,{"stream_name":"stdout","time":227.18136669,"data":"        (2): BottleneckBlock(\n"}
,{"stream_name":"stdout","time":227.181371641,"data":"          (conv1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181376549,"data":"            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181382795,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181388078,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181393547,"data":"          (conv2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181398537,"data":"            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181403673,"data":"            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181408696,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181413535,"data":"          (conv3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181418905,"data":"            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False\n"}
,{"stream_name":"stdout","time":227.181424205,"data":"            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)\n"}
,{"stream_name":"stdout","time":227.181429122,"data":"          )\n"}
,{"stream_name":"stdout","time":227.181434063,"data":"        )\n"}
,{"stream_name":"stdout","time":227.181438825,"data":"      )\n"}
,{"stream_name":"stdout","time":227.181443796,"data":"    )\n"}
,{"stream_name":"stdout","time":227.181448638,"data":"  )\n"}
,{"stream_name":"stdout","time":227.181453454,"data":"  (proposal_generator): RPN(\n"}
,{"stream_name":"stdout","time":227.181458465,"data":"    (rpn_head): StandardRPNHead(\n"}
,{"stream_name":"stdout","time":227.181463297,"data":"      (conv): Conv2d(\n"}
,{"stream_name":"stdout","time":227.181472579,"data":"        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.181477859,"data":"        (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.181482759,"data":"      )\n"}
,{"stream_name":"stdout","time":227.181488225,"data":"      (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.181493739,"data":"      (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.181498749,"data":"    )\n"}
,{"stream_name":"stdout","time":227.181512003,"data":"    (anchor_generator): DefaultAnchorGenerator(\n"}
,{"stream_name":"stdout","time":227.181517215,"data":"      (cell_anchors): BufferList()\n"}
,{"stream_name":"stdout","time":227.181522254,"data":"    )\n"}
,{"stream_name":"stdout","time":227.181527441,"data":"  )\n"}
,{"stream_name":"stdout","time":227.181532261,"data":"  (roi_heads): StandardROIHeads(\n"}
,{"stream_name":"stdout","time":227.181537249,"data":"    (box_pooler): ROIPooler(\n"}
,{"stream_name":"stdout","time":227.18154221,"data":"      (level_poolers): ModuleList(\n"}
,{"stream_name":"stdout","time":227.181547381,"data":"        (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.18155303,"data":"        (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.181558271,"data":"        (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.181565761,"data":"        (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.181729465,"data":"      )\n"}
,{"stream_name":"stdout","time":227.181751722,"data":"    )\n"}
,{"stream_name":"stdout","time":227.181773205,"data":"    (box_head): FastRCNNConvFCHead(\n"}
,{"stream_name":"stdout","time":227.181790567,"data":"      (flatten): Flatten(start_dim=1, end_dim=-1)\n"}
,{"stream_name":"stdout","time":227.181808844,"data":"      (fc1): Linear(in_features=12544, out_features=1024, bias=True)\n"}
,{"stream_name":"stdout","time":227.181826875,"data":"      (fc_relu1): ReLU()\n"}
,{"stream_name":"stdout","time":227.181845128,"data":"      (fc2): Linear(in_features=1024, out_features=1024, bias=True)\n"}
,{"stream_name":"stdout","time":227.181864632,"data":"      (fc_relu2): ReLU()\n"}
,{"stream_name":"stdout","time":227.181883825,"data":"    )\n"}
,{"stream_name":"stdout","time":227.181900094,"data":"    (box_predictor): FastRCNNOutputLayers(\n"}
,{"stream_name":"stdout","time":227.181917776,"data":"      (cls_score): Linear(in_features=1024, out_features=5, bias=True)\n"}
,{"stream_name":"stdout","time":227.181933954,"data":"      (bbox_pred): Linear(in_features=1024, out_features=16, bias=True)\n"}
,{"stream_name":"stdout","time":227.181953794,"data":"    )\n"}
,{"stream_name":"stdout","time":227.181971907,"data":"    (mask_pooler): ROIPooler(\n"}
,{"stream_name":"stdout","time":227.181989415,"data":"      (level_poolers): ModuleList(\n"}
,{"stream_name":"stdout","time":227.182006215,"data":"        (0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.18202305,"data":"        (1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.182044622,"data":"        (2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.182071865,"data":"        (3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)\n"}
,{"stream_name":"stdout","time":227.182111882,"data":"      )\n"}
,{"stream_name":"stdout","time":227.182133524,"data":"    )\n"}
,{"stream_name":"stdout","time":227.182149704,"data":"    (mask_head): MaskRCNNConvUpsampleHead(\n"}
,{"stream_name":"stdout","time":227.182202938,"data":"      (mask_fcn1): Conv2d(\n"}
,{"stream_name":"stdout","time":227.182221526,"data":"        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.182238354,"data":"        (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.182255526,"data":"      )\n"}
,{"stream_name":"stdout","time":227.182291705,"data":"      (mask_fcn2): Conv2d(\n"}
,{"stream_name":"stdout","time":227.182309548,"data":"        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.182325672,"data":"        (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.182342486,"data":"      )\n"}
,{"stream_name":"stdout","time":227.182375262,"data":"      (mask_fcn3): Conv2d(\n"}
,{"stream_name":"stdout","time":227.182390364,"data":"        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.182406994,"data":"        (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.182423953,"data":"      )\n"}
,{"stream_name":"stdout","time":227.18245527,"data":"      (mask_fcn4): Conv2d(\n"}
,{"stream_name":"stdout","time":227.182472856,"data":"        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)\n"}
,{"stream_name":"stdout","time":227.182488279,"data":"        (activation): ReLU()\n"}
,{"stream_name":"stdout","time":227.18255243,"data":"      )\n"}
,{"stream_name":"stdout","time":227.182569518,"data":"      (deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))\n"}
,{"stream_name":"stdout","time":227.182585696,"data":"      (deconv_relu): ReLU()\n"}
,{"stream_name":"stdout","time":227.182619832,"data":"      (predictor): Conv2d(256, 4, kernel_size=(1, 1), stride=(1, 1))\n"}
,{"stream_name":"stdout","time":227.182639116,"data":"    )\n"}
,{"stream_name":"stdout","time":227.182661524,"data":"  )\n"}
,{"stream_name":"stdout","time":227.18267819,"data":")\n"}
,{"stream_name":"stdout","time":227.194125733,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:38:42 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":227.194167193,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":227.194180416,"data":"\n"}
,{"stream_name":"stdout","time":227.196109555,"data":"\u001b[32m[09/23 07:38:42 d2.data.datasets.coco]: \u001b[0mLoaded 123 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/train/train.json\n"}
,{"stream_name":"stdout","time":227.202177857,"data":"\u001b[32m[09/23 07:38:42 d2.data.build]: \u001b[0mRemoved 0 images with no usable annotations. 123 images left.\n"}
,{"stream_name":"stdout","time":227.21499769,"data":"\u001b[32m[09/23 07:38:42 d2.data.build]: \u001b[0mDistribution of instances among all 4 categories:\n"}
,{"stream_name":"stdout","time":227.215031132,"data":"\u001b[36m|   category    | #instances   | category   | #instances   | category   | #instances   |\n"}
,{"stream_name":"stdout","time":227.2150391,"data":"|:-------------:|:-------------|:-----------|:-------------|:-----------|:-------------|\n"}
,{"stream_name":"stdout","time":227.215057176,"data":"| leaf, flowe.. | 0            | 0          | 440          | 1          | 164          |\n"}
,{"stream_name":"stdout","time":227.215063542,"data":"|       2       | 114          |            |              |            |              |\n"}
,{"stream_name":"stdout","time":227.215069607,"data":"|     total     | 718          |            |              |            |              |\u001b[0m\n"}
,{"stream_name":"stdout","time":227.21704684,"data":"\u001b[32m[09/23 07:38:42 d2.data.dataset_mapper]: \u001b[0m[DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()]\n"}
,{"stream_name":"stdout","time":227.218765315,"data":"\u001b[32m[09/23 07:38:42 d2.data.build]: \u001b[0mUsing training sampler TrainingSampler\n"}
,{"stream_name":"stdout","time":227.220234089,"data":"\u001b[32m[09/23 07:38:42 d2.data.common]: \u001b[0mSerializing the dataset using: \u003cclass 'detectron2.data.common._TorchSerializedList'\u003e\n"}
,{"stream_name":"stdout","time":227.224137052,"data":"\u001b[32m[09/23 07:38:42 d2.data.common]: \u001b[0mSerializing 123 elements to byte tensors and concatenating them all ...\n"}
,{"stream_name":"stdout","time":227.230644552,"data":"\u001b[32m[09/23 07:38:42 d2.data.common]: \u001b[0mSerialized dataset takes 0.17 MiB\n"}
,{"stream_name":"stdout","time":227.232131018,"data":"\u001b[32m[09/23 07:38:42 d2.checkpoint.detection_checkpoint]: \u001b[0m[DetectionCheckpointer] Loading from https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl ...\n"}
,{"stream_name":"stderr","time":228.472521436,"data":"\rmodel_final_f10217.pkl: 0.00B [00:00, ?B/s]\rmodel_final_f10217.pkl:   0%|          | 8.19k/178M [00:00\u003c44:21, 66.8kB/s]\rmodel_final_f10217.pkl:   3%|▎         | 4.88M/178M [00:00\u003c00:06, 25.2MB/s]\rmodel_final_f10217.pkl:   7%|▋         | 12.7M/178M [00:00\u003c00:03, 47.7MB/s]\rmodel_final_f10217.pkl:  13%|█▎        | 22.4M/178M [00:00\u003c00:02, 66.1MB/s]\rmodel_final_f10217.pkl:  20%|█▉        | 34.8M/178M [00:00\u003c00:01, 86.4MB/s]\rmodel_final_f10217.pkl:  28%|██▊       | 49.2M/178M [00:00\u003c00:01, 106MB/s] \rmodel_final_f10217.pkl:  38%|███▊      | 67.8M/178M [00:00\u003c00:00, 132MB/s]\rmodel_final_f10217.pkl:  51%|█████     | 90.0M/178M [00:00\u003c00:00, 160MB/s]\rmodel_final_f10217.pkl:  64%|██████▎   | 113M/178M [00:00\u003c00:00, 183MB/s] \rmodel_final_f10217.pkl:  77%|███████▋  | 136M/178M [00:01\u003c00:00, 198MB/s]\rmodel_final_f10217.pkl:  90%|████████▉ | 160M/178M [00:01\u003c00:00, 208MB/s]\rmodel_final_f10217.pkl: 178MB [00:01, 147MB/s]                           \n"}
,{"stream_name":"stdout","time":228.653681696,"data":"\u001b[32m[09/23 07:38:44 d2.engine.train_loop]: \u001b[0mStarting training from iteration 0\n"}
,{"stream_name":"stderr","time":241.278435168,"data":"/opt/conda/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /usr/local/src/pytorch/aten/src/ATen/native/TensorShape.cpp:3483.)\n"}
,{"stream_name":"stderr","time":241.27850688,"data":"  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]\n"}
,{"stream_name":"stdout","time":251.518974705,"data":"\u001b[32m[09/23 07:39:07 d2.utils.events]: \u001b[0m eta: 0:05:39  iter: 19  total_loss: 2.828  loss_cls: 1.447  loss_box_reg: 0.4917  loss_mask: 0.6928  loss_rpn_cls: 0.1044  loss_rpn_loc: 0.02792    time: 0.3470  last_time: 0.3698  data_time: 0.0158  last_data_time: 0.0070   lr: 4.9953e-06  max_mem: 1767M\n"}
,{"stream_name":"stderr","time":260.105853923,"data":"/opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version \u003e=1.16.5 and \u003c1.23.0 is required for this version of SciPy (detected version 1.23.5\n"}
,{"stream_name":"stderr","time":260.105889154,"data":"  warnings.warn(f\"A NumPy version \u003e={np_minversion} and \u003c{np_maxversion}\"\n"}
,{"stream_name":"stdout","time":274.857913039,"data":"\u001b[32m[09/23 07:39:30 d2.utils.events]: \u001b[0m eta: 0:05:29  iter: 39  total_loss: 2.735  loss_cls: 1.383  loss_box_reg: 0.5501  loss_mask: 0.688  loss_rpn_cls: 0.02683  loss_rpn_loc: 0.01686    time: 0.4269  last_time: 0.3428  data_time: 0.0080  last_data_time: 0.0089   lr: 9.9902e-06  max_mem: 1772M\n"}
,{"stream_name":"stdout","time":281.719035339,"data":"\u001b[32m[09/23 07:39:37 d2.utils.events]: \u001b[0m eta: 0:05:22  iter: 59  total_loss: 2.39  loss_cls: 1.152  loss_box_reg: 0.5103  loss_mask: 0.6818  loss_rpn_cls: 0.05638  loss_rpn_loc: 0.02092    time: 0.3976  last_time: 0.4037  data_time: 0.0069  last_data_time: 0.0072   lr: 1.4985e-05  max_mem: 1772M\n"}
,{"stream_name":"stdout","time":288.837230053,"data":"\u001b[32m[09/23 07:39:44 d2.utils.events]: \u001b[0m eta: 0:05:17  iter: 79  total_loss: 2.393  loss_cls: 0.9233  loss_box_reg: 0.6164  loss_mask: 0.6686  loss_rpn_cls: 0.08493  loss_rpn_loc: 0.02326    time: 0.3868  last_time: 0.3918  data_time: 0.0072  last_data_time: 0.0065   lr: 1.998e-05  max_mem: 1773M\n"}
,{"stream_name":"stdout","time":295.766690036,"data":"\u001b[32m[09/23 07:39:51 d2.utils.events]: \u001b[0m eta: 0:05:08  iter: 99  total_loss: 2.018  loss_cls: 0.7153  loss_box_reg: 0.4563  loss_mask: 0.6582  loss_rpn_cls: 0.05049  loss_rpn_loc: 0.02335    time: 0.3778  last_time: 0.3366  data_time: 0.0086  last_data_time: 0.0065   lr: 2.4975e-05  max_mem: 1773M\n"}
,{"stream_name":"stdout","time":302.773351708,"data":"\u001b[32m[09/23 07:39:58 d2.utils.events]: \u001b[0m eta: 0:05:02  iter: 119  total_loss: 1.87  loss_cls: 0.6182  loss_box_reg: 0.5203  loss_mask: 0.6352  loss_rpn_cls: 0.0492  loss_rpn_loc: 0.02022    time: 0.3735  last_time: 0.3489  data_time: 0.0083  last_data_time: 0.0062   lr: 2.997e-05  max_mem: 1774M\n"}
,{"stream_name":"stdout","time":309.871407386,"data":"\u001b[32m[09/23 07:40:05 d2.utils.events]: \u001b[0m eta: 0:04:58  iter: 139  total_loss: 1.879  loss_cls: 0.5958  loss_box_reg: 0.5152  loss_mask: 0.6125  loss_rpn_cls: 0.03336  loss_rpn_loc: 0.01598    time: 0.3707  last_time: 0.3607  data_time: 0.0081  last_data_time: 0.0070   lr: 3.4965e-05  max_mem: 1774M\n"}
,{"stream_name":"stdout","time":316.890266425,"data":"\u001b[32m[09/23 07:40:12 d2.utils.events]: \u001b[0m eta: 0:04:51  iter: 159  total_loss: 1.826  loss_cls: 0.5633  loss_box_reg: 0.5863  loss_mask: 0.5935  loss_rpn_cls: 0.0336  loss_rpn_loc: 0.0204    time: 0.3682  last_time: 0.3499  data_time: 0.0078  last_data_time: 0.0063   lr: 3.996e-05  max_mem: 1774M\n"}
,{"stream_name":"stdout","time":323.911162118,"data":"\u001b[32m[09/23 07:40:19 d2.utils.events]: \u001b[0m eta: 0:04:44  iter: 179  total_loss: 1.708  loss_cls: 0.5234  loss_box_reg: 0.5497  loss_mask: 0.5757  loss_rpn_cls: 0.02893  loss_rpn_loc: 0.02126    time: 0.3662  last_time: 0.3599  data_time: 0.0071  last_data_time: 0.0067   lr: 4.4955e-05  max_mem: 1774M\n"}
,{"stream_name":"stdout","time":330.976295222,"data":"\u001b[32m[09/23 07:40:26 d2.utils.events]: \u001b[0m eta: 0:04:38  iter: 199  total_loss: 1.733  loss_cls: 0.5085  loss_box_reg: 0.5441  loss_mask: 0.5637  loss_rpn_cls: 0.03238  loss_rpn_loc: 0.02728    time: 0.3646  last_time: 0.3137  data_time: 0.0072  last_data_time: 0.0081   lr: 4.995e-05  max_mem: 1774M\n"}
,{"stream_name":"stdout","time":338.394322939,"data":"\u001b[32m[09/23 07:40:33 d2.utils.events]: \u001b[0m eta: 0:04:32  iter: 219  total_loss: 1.709  loss_cls: 0.5236  loss_box_reg: 0.5941  loss_mask: 0.5093  loss_rpn_cls: 0.02147  loss_rpn_loc: 0.02077    time: 0.3653  last_time: 0.3540  data_time: 0.0114  last_data_time: 0.0258   lr: 5.4945e-05  max_mem: 1774M\n"}
,{"stream_name":"stdout","time":345.525876389,"data":"\u001b[32m[09/23 07:40:41 d2.utils.events]: \u001b[0m eta: 0:04:26  iter: 239  total_loss: 1.628  loss_cls: 0.4467  loss_box_reg: 0.5763  loss_mask: 0.5075  loss_rpn_cls: 0.02056  loss_rpn_loc: 0.02806    time: 0.3645  last_time: 0.3969  data_time: 0.0085  last_data_time: 0.0064   lr: 5.994e-05  max_mem: 1774M\n"}
,{"stream_name":"stdout","time":352.559771032,"data":"\u001b[32m[09/23 07:40:48 d2.utils.events]: \u001b[0m eta: 0:04:20  iter: 259  total_loss: 1.477  loss_cls: 0.416  loss_box_reg: 0.5193  loss_mask: 0.4923  loss_rpn_cls: 0.01588  loss_rpn_loc: 0.0164    time: 0.3634  last_time: 0.3532  data_time: 0.0069  last_data_time: 0.0061   lr: 6.4935e-05  max_mem: 1774M\n"}
,{"stream_name":"stdout","time":359.769010562,"data":"\u001b[32m[09/23 07:40:55 d2.utils.events]: \u001b[0m eta: 0:04:13  iter: 279  total_loss: 1.503  loss_cls: 0.4283  loss_box_reg: 0.566  loss_mask: 0.4444  loss_rpn_cls: 0.02047  loss_rpn_loc: 0.02029    time: 0.3632  last_time: 0.2831  data_time: 0.0087  last_data_time: 0.0088   lr: 6.993e-05  max_mem: 1775M\n"}
,{"stream_name":"stdout","time":367.474066393,"data":"\u001b[32m[09/23 07:41:02 d2.utils.events]: \u001b[0m eta: 0:04:07  iter: 299  total_loss: 1.536  loss_cls: 0.4297  loss_box_reg: 0.5559  loss_mask: 0.437  loss_rpn_cls: 0.03421  loss_rpn_loc: 0.02454    time: 0.3645  last_time: 0.3751  data_time: 0.0074  last_data_time: 0.0091   lr: 7.4925e-05  max_mem: 1775M\n"}
,{"stream_name":"stdout","time":374.662886654,"data":"\u001b[32m[09/23 07:41:10 d2.utils.events]: \u001b[0m eta: 0:04:01  iter: 319  total_loss: 1.412  loss_cls: 0.4156  loss_box_reg: 0.5481  loss_mask: 0.4122  loss_rpn_cls: 0.01921  loss_rpn_loc: 0.01239    time: 0.3642  last_time: 0.3551  data_time: 0.0103  last_data_time: 0.0065   lr: 7.992e-05  max_mem: 1775M\n"}
,{"stream_name":"stdout","time":382.170783334,"data":"\u001b[32m[09/23 07:41:17 d2.utils.events]: \u001b[0m eta: 0:03:54  iter: 339  total_loss: 1.266  loss_cls: 0.3341  loss_box_reg: 0.4788  loss_mask: 0.3911  loss_rpn_cls: 0.01888  loss_rpn_loc: 0.01569    time: 0.3649  last_time: 0.4293  data_time: 0.0080  last_data_time: 0.0070   lr: 8.4915e-05  max_mem: 1775M\n"}
,{"stream_name":"stdout","time":389.425823612,"data":"\u001b[32m[09/23 07:41:24 d2.utils.events]: \u001b[0m eta: 0:03:47  iter: 359  total_loss: 1.395  loss_cls: 0.3506  loss_box_reg: 0.5867  loss_mask: 0.3759  loss_rpn_cls: 0.01438  loss_rpn_loc: 0.01705    time: 0.3647  last_time: 0.3646  data_time: 0.0074  last_data_time: 0.0071   lr: 8.991e-05  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":396.96129169,"data":"\u001b[32m[09/23 07:41:32 d2.utils.events]: \u001b[0m eta: 0:03:40  iter: 379  total_loss: 1.451  loss_cls: 0.3727  loss_box_reg: 0.6039  loss_mask: 0.3999  loss_rpn_cls: 0.01364  loss_rpn_loc: 0.01788    time: 0.3653  last_time: 0.4154  data_time: 0.0070  last_data_time: 0.0067   lr: 9.4905e-05  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":404.823707244,"data":"\u001b[32m[09/23 07:41:40 d2.utils.events]: \u001b[0m eta: 0:03:34  iter: 399  total_loss: 1.315  loss_cls: 0.3367  loss_box_reg: 0.5276  loss_mask: 0.3453  loss_rpn_cls: 0.01492  loss_rpn_loc: 0.01715    time: 0.3666  last_time: 0.4236  data_time: 0.0112  last_data_time: 0.0087   lr: 9.99e-05  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":411.905664712,"data":"\u001b[32m[09/23 07:41:47 d2.utils.events]: \u001b[0m eta: 0:03:27  iter: 419  total_loss: 0.9786  loss_cls: 0.2303  loss_box_reg: 0.4012  loss_mask: 0.3317  loss_rpn_cls: 0.009277  loss_rpn_loc: 0.01368    time: 0.3660  last_time: 0.3196  data_time: 0.0081  last_data_time: 0.0076   lr: 0.0001049  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":419.540183238,"data":"\u001b[32m[09/23 07:41:55 d2.utils.events]: \u001b[0m eta: 0:03:21  iter: 439  total_loss: 1.285  loss_cls: 0.2976  loss_box_reg: 0.5277  loss_mask: 0.3637  loss_rpn_cls: 0.01374  loss_rpn_loc: 0.02255    time: 0.3667  last_time: 0.4135  data_time: 0.0069  last_data_time: 0.0070   lr: 0.00010989  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":427.026892669,"data":"\u001b[32m[09/23 07:42:02 d2.utils.events]: \u001b[0m eta: 0:03:14  iter: 459  total_loss: 1.119  loss_cls: 0.2653  loss_box_reg: 0.5093  loss_mask: 0.3336  loss_rpn_cls: 0.008255  loss_rpn_loc: 0.01522    time: 0.3670  last_time: 0.3390  data_time: 0.0081  last_data_time: 0.0072   lr: 0.00011489  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":434.509628645,"data":"\u001b[32m[09/23 07:42:09 d2.utils.events]: \u001b[0m eta: 0:03:08  iter: 479  total_loss: 1.243  loss_cls: 0.3047  loss_box_reg: 0.5412  loss_mask: 0.3295  loss_rpn_cls: 0.01302  loss_rpn_loc: 0.01568    time: 0.3673  last_time: 0.3210  data_time: 0.0090  last_data_time: 0.0100   lr: 0.00011988  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":442.176178234,"data":"\u001b[32m[09/23 07:42:17 d2.utils.events]: \u001b[0m eta: 0:03:00  iter: 499  total_loss: 1.142  loss_cls: 0.2688  loss_box_reg: 0.4826  loss_mask: 0.3046  loss_rpn_cls: 0.006692  loss_rpn_loc: 0.01597    time: 0.3678  last_time: 0.4091  data_time: 0.0070  last_data_time: 0.0064   lr: 0.00012488  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":449.602940172,"data":"\u001b[32m[09/23 07:42:25 d2.utils.events]: \u001b[0m eta: 0:02:53  iter: 519  total_loss: 1.065  loss_cls: 0.2476  loss_box_reg: 0.4258  loss_mask: 0.3209  loss_rpn_cls: 0.0138  loss_rpn_loc: 0.01544    time: 0.3680  last_time: 0.3954  data_time: 0.0083  last_data_time: 0.0073   lr: 0.00012987  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":457.112448665,"data":"\u001b[32m[09/23 07:42:32 d2.utils.events]: \u001b[0m eta: 0:02:46  iter: 539  total_loss: 0.9309  loss_cls: 0.1731  loss_box_reg: 0.4198  loss_mask: 0.2816  loss_rpn_cls: 0.004735  loss_rpn_loc: 0.01888    time: 0.3683  last_time: 0.3994  data_time: 0.0067  last_data_time: 0.0063   lr: 0.00013487  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":465.022043696,"data":"\u001b[32m[09/23 07:42:40 d2.utils.events]: \u001b[0m eta: 0:02:40  iter: 559  total_loss: 1.027  loss_cls: 0.2307  loss_box_reg: 0.4041  loss_mask: 0.3095  loss_rpn_cls: 0.01669  loss_rpn_loc: 0.02477    time: 0.3692  last_time: 0.4273  data_time: 0.0100  last_data_time: 0.0261   lr: 0.00013986  max_mem: 1776M\n"}
,{"stream_name":"stdout","time":472.342005965,"data":"\u001b[32m[09/23 07:42:47 d2.utils.events]: \u001b[0m eta: 0:02:32  iter: 579  total_loss: 0.7264  loss_cls: 0.1098  loss_box_reg: 0.2802  loss_mask: 0.2807  loss_rpn_cls: 0.003293  loss_rpn_loc: 0.01229    time: 0.3690  last_time: 0.3049  data_time: 0.0084  last_data_time: 0.0069   lr: 0.00014486  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":479.85336258,"data":"\u001b[32m[09/23 07:42:55 d2.utils.events]: \u001b[0m eta: 0:02:25  iter: 599  total_loss: 0.899  loss_cls: 0.2028  loss_box_reg: 0.329  loss_mask: 0.3195  loss_rpn_cls: 0.007076  loss_rpn_loc: 0.02576    time: 0.3693  last_time: 0.3022  data_time: 0.0079  last_data_time: 0.0075   lr: 0.00014985  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":487.280054506,"data":"\u001b[32m[09/23 07:43:02 d2.utils.events]: \u001b[0m eta: 0:02:18  iter: 619  total_loss: 0.8217  loss_cls: 0.1623  loss_box_reg: 0.3018  loss_mask: 0.2941  loss_rpn_cls: 0.005526  loss_rpn_loc: 0.02092    time: 0.3693  last_time: 0.4131  data_time: 0.0076  last_data_time: 0.0073   lr: 0.00015485  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":494.711325657,"data":"\u001b[32m[09/23 07:43:10 d2.utils.events]: \u001b[0m eta: 0:02:11  iter: 639  total_loss: 0.7626  loss_cls: 0.1449  loss_box_reg: 0.3171  loss_mask: 0.2855  loss_rpn_cls: 0.003396  loss_rpn_loc: 0.01711    time: 0.3694  last_time: 0.3385  data_time: 0.0072  last_data_time: 0.0071   lr: 0.00015984  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":502.406562878,"data":"\u001b[32m[09/23 07:43:17 d2.utils.events]: \u001b[0m eta: 0:02:03  iter: 659  total_loss: 0.8223  loss_cls: 0.1529  loss_box_reg: 0.319  loss_mask: 0.2761  loss_rpn_cls: 0.00508  loss_rpn_loc: 0.01968    time: 0.3698  last_time: 0.3346  data_time: 0.0082  last_data_time: 0.0088   lr: 0.00016484  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":510.053115581,"data":"\u001b[32m[09/23 07:43:25 d2.utils.events]: \u001b[0m eta: 0:01:56  iter: 679  total_loss: 0.6646  loss_cls: 0.1136  loss_box_reg: 0.2644  loss_mask: 0.2595  loss_rpn_cls: 0.005713  loss_rpn_loc: 0.01864    time: 0.3702  last_time: 0.3531  data_time: 0.0085  last_data_time: 0.0078   lr: 0.00016983  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":517.562705788,"data":"\u001b[32m[09/23 07:43:33 d2.utils.events]: \u001b[0m eta: 0:01:49  iter: 699  total_loss: 0.6694  loss_cls: 0.1057  loss_box_reg: 0.2457  loss_mask: 0.2652  loss_rpn_cls: 0.003795  loss_rpn_loc: 0.01363    time: 0.3703  last_time: 0.3294  data_time: 0.0076  last_data_time: 0.0089   lr: 0.00017483  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":524.91804221,"data":"\u001b[32m[09/23 07:43:40 d2.utils.events]: \u001b[0m eta: 0:01:42  iter: 719  total_loss: 0.8476  loss_cls: 0.1678  loss_box_reg: 0.311  loss_mask: 0.3076  loss_rpn_cls: 0.008928  loss_rpn_loc: 0.02535    time: 0.3702  last_time: 0.4312  data_time: 0.0072  last_data_time: 0.0072   lr: 0.00017982  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":532.605087723,"data":"\u001b[32m[09/23 07:43:47 d2.utils.events]: \u001b[0m eta: 0:01:35  iter: 739  total_loss: 0.6485  loss_cls: 0.09793  loss_box_reg: 0.2633  loss_mask: 0.2799  loss_rpn_cls: 0.008818  loss_rpn_loc: 0.01637    time: 0.3704  last_time: 0.4122  data_time: 0.0092  last_data_time: 0.0062   lr: 0.00018482  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":539.851856257,"data":"\u001b[32m[09/23 07:43:55 d2.utils.events]: \u001b[0m eta: 0:01:27  iter: 759  total_loss: 0.7775  loss_cls: 0.1542  loss_box_reg: 0.2954  loss_mask: 0.2675  loss_rpn_cls: 0.006361  loss_rpn_loc: 0.03081    time: 0.3703  last_time: 0.3897  data_time: 0.0079  last_data_time: 0.0067   lr: 0.00018981  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":547.255724779,"data":"\u001b[32m[09/23 07:44:02 d2.utils.events]: \u001b[0m eta: 0:01:20  iter: 779  total_loss: 0.5322  loss_cls: 0.07315  loss_box_reg: 0.2183  loss_mask: 0.2537  loss_rpn_cls: 0.002045  loss_rpn_loc: 0.01187    time: 0.3703  last_time: 0.3445  data_time: 0.0081  last_data_time: 0.0062   lr: 0.00019481  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":554.533396611,"data":"\u001b[32m[09/23 07:44:10 d2.utils.events]: \u001b[0m eta: 0:01:13  iter: 799  total_loss: 0.583  loss_cls: 0.1178  loss_box_reg: 0.2244  loss_mask: 0.2243  loss_rpn_cls: 0.002606  loss_rpn_loc: 0.01259    time: 0.3701  last_time: 0.3479  data_time: 0.0088  last_data_time: 0.0061   lr: 0.0001998  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":562.09889552,"data":"\u001b[32m[09/23 07:44:17 d2.utils.events]: \u001b[0m eta: 0:01:05  iter: 819  total_loss: 0.6812  loss_cls: 0.1063  loss_box_reg: 0.2592  loss_mask: 0.2674  loss_rpn_cls: 0.005045  loss_rpn_loc: 0.01705    time: 0.3703  last_time: 0.3368  data_time: 0.0104  last_data_time: 0.0068   lr: 0.0002048  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":569.577541326,"data":"\u001b[32m[09/23 07:44:25 d2.utils.events]: \u001b[0m eta: 0:00:58  iter: 839  total_loss: 0.6475  loss_cls: 0.1354  loss_box_reg: 0.2331  loss_mask: 0.2683  loss_rpn_cls: 0.003228  loss_rpn_loc: 0.01554    time: 0.3703  last_time: 0.3450  data_time: 0.0073  last_data_time: 0.0085   lr: 0.00020979  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":577.105613046,"data":"\u001b[32m[09/23 07:44:32 d2.utils.events]: \u001b[0m eta: 0:00:51  iter: 859  total_loss: 0.5261  loss_cls: 0.08092  loss_box_reg: 0.2062  loss_mask: 0.2242  loss_rpn_cls: 0.001237  loss_rpn_loc: 0.01276    time: 0.3705  last_time: 0.4097  data_time: 0.0084  last_data_time: 0.0081   lr: 0.00021479  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":584.639586156,"data":"\u001b[32m[09/23 07:44:40 d2.utils.events]: \u001b[0m eta: 0:00:43  iter: 879  total_loss: 0.5345  loss_cls: 0.07986  loss_box_reg: 0.2093  loss_mask: 0.1887  loss_rpn_cls: 0.0009999  loss_rpn_loc: 0.008154    time: 0.3706  last_time: 0.3908  data_time: 0.0076  last_data_time: 0.0079   lr: 0.00021978  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":592.133724965,"data":"\u001b[32m[09/23 07:44:47 d2.utils.events]: \u001b[0m eta: 0:00:36  iter: 899  total_loss: 0.6179  loss_cls: 0.1105  loss_box_reg: 0.2395  loss_mask: 0.2561  loss_rpn_cls: 0.008318  loss_rpn_loc: 0.01785    time: 0.3707  last_time: 0.3466  data_time: 0.0090  last_data_time: 0.0072   lr: 0.00022478  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":599.759886771,"data":"\u001b[32m[09/23 07:44:55 d2.utils.events]: \u001b[0m eta: 0:00:29  iter: 919  total_loss: 0.4821  loss_cls: 0.07783  loss_box_reg: 0.1655  loss_mask: 0.2053  loss_rpn_cls: 0.0013  loss_rpn_loc: 0.01239    time: 0.3709  last_time: 0.4113  data_time: 0.0079  last_data_time: 0.0068   lr: 0.00022977  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":607.564687644,"data":"\u001b[32m[09/23 07:45:03 d2.utils.events]: \u001b[0m eta: 0:00:22  iter: 939  total_loss: 0.5789  loss_cls: 0.1175  loss_box_reg: 0.2348  loss_mask: 0.2183  loss_rpn_cls: 0.002596  loss_rpn_loc: 0.01899    time: 0.3713  last_time: 0.3916  data_time: 0.0087  last_data_time: 0.0098   lr: 0.00023477  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":614.932708254,"data":"\u001b[32m[09/23 07:45:10 d2.utils.events]: \u001b[0m eta: 0:00:14  iter: 959  total_loss: 0.5084  loss_cls: 0.08297  loss_box_reg: 0.1746  loss_mask: 0.235  loss_rpn_cls: 0.002214  loss_rpn_loc: 0.01299    time: 0.3713  last_time: 0.3617  data_time: 0.0084  last_data_time: 0.0086   lr: 0.00023976  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":622.746722669,"data":"\u001b[32m[09/23 07:45:18 d2.utils.events]: \u001b[0m eta: 0:00:07  iter: 979  total_loss: 0.5914  loss_cls: 0.08434  loss_box_reg: 0.235  loss_mask: 0.2241  loss_rpn_cls: 0.002513  loss_rpn_loc: 0.01149    time: 0.3716  last_time: 0.3726  data_time: 0.0085  last_data_time: 0.0177   lr: 0.00024476  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":630.929186452,"data":"\u001b[32m[09/23 07:45:26 d2.utils.events]: \u001b[0m eta: 0:00:00  iter: 999  total_loss: 0.6494  loss_cls: 0.1022  loss_box_reg: 0.2411  loss_mask: 0.252  loss_rpn_cls: 0.002364  loss_rpn_loc: 0.0139    time: 0.3716  last_time: 0.3077  data_time: 0.0075  last_data_time: 0.0069   lr: 0.00024975  max_mem: 1777M\n"}
,{"stream_name":"stdout","time":630.930411314,"data":"\u001b[32m[09/23 07:45:26 d2.engine.hooks]: \u001b[0mOverall training speed: 998 iterations in 0:06:10 (0.3716 s / it)\n"}
,{"stream_name":"stdout","time":630.932104437,"data":"\u001b[32m[09/23 07:45:26 d2.engine.hooks]: \u001b[0mTotal training time: 0:06:25 (0:00:14 on hooks)\n"}
,{"stream_name":"stdout","time":631.852853369,"data":"\u001b[32m[09/23 07:45:27 d2.checkpoint.detection_checkpoint]: \u001b[0m[DetectionCheckpointer] Loading from /kaggle/working/outputs/model_final.pth ...\n"}
,{"stream_name":"stdout","time":633.854559424,"data":"\u001b[5m\u001b[31mWARNING\u001b[0m \u001b[32m[09/23 07:45:29 d2.data.datasets.coco]: \u001b[0m\n"}
,{"stream_name":"stdout","time":633.854596514,"data":"Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.\n"}
,{"stream_name":"stdout","time":633.854603187,"data":"\n"}
,{"stream_name":"stdout","time":633.855964849,"data":"\u001b[32m[09/23 07:45:29 d2.data.datasets.coco]: \u001b[0mLoaded 18 images in COCO format from /kaggle/input/leaf-flower-fruit-annotation/semantic-segmentation-of-plants.v2i.coco-segmentation/valid/valid.json\n"}
,{"stream_name":"stdout","time":633.862563388,"data":"\u001b[32m[09/23 07:45:29 d2.data.build]: \u001b[0mDistribution of instances among all 4 categories:\n"}
,{"stream_name":"stdout","time":633.862601189,"data":"\u001b[36m|   category    | #instances   | category   | #instances   | category   | #instances   |\n"}
,{"stream_name":"stdout","time":633.862608844,"data":"|:-------------:|:-------------|:-----------|:-------------|:-----------|:-------------|\n"}
,{"stream_name":"stdout","time":633.862614688,"data":"| leaf, flowe.. | 0            | 0          | 27           | 1          | 19           |\n"}
,{"stream_name":"stdout","time":633.862620603,"data":"|       2       | 36           |            |              |            |              |\n"}
,{"stream_name":"stdout","time":633.862626214,"data":"|     total     | 82           |            |              |            |              |\u001b[0m\n"}
,{"stream_name":"stdout","time":633.864171798,"data":"\u001b[32m[09/23 07:45:29 d2.data.dataset_mapper]: \u001b[0m[DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')]\n"}
,{"stream_name":"stdout","time":633.865624594,"data":"\u001b[32m[09/23 07:45:29 d2.data.common]: \u001b[0mSerializing the dataset using: \u003cclass 'detectron2.data.common._TorchSerializedList'\u003e\n"}
,{"stream_name":"stdout","time":633.867186249,"data":"\u001b[32m[09/23 07:45:29 d2.data.common]: \u001b[0mSerializing 18 elements to byte tensors and concatenating them all ...\n"}
,{"stream_name":"stdout","time":633.868659769,"data":"\u001b[32m[09/23 07:45:29 d2.data.common]: \u001b[0mSerialized dataset takes 0.02 MiB\n"}
,{"stream_name":"stdout","time":633.870068823,"data":"\u001b[32m[09/23 07:45:29 d2.evaluation.evaluator]: \u001b[0mStart inference on 18 batches\n"}
,{"stream_name":"stdout","time":635.094665576,"data":"\u001b[32m[09/23 07:45:30 d2.evaluation.evaluator]: \u001b[0mInference done 11/18. Dataloading: 0.0016 s/iter. Inference: 0.0821 s/iter. Eval: 0.0064 s/iter. Total: 0.0901 s/iter. ETA=0:00:00\n"}
,{"stream_name":"stdout","time":635.766430367,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.evaluator]: \u001b[0mTotal inference time: 0:00:01.213719 (0.093363 s / iter per device, on 1 devices)\n"}
,{"stream_name":"stdout","time":635.769214269,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.evaluator]: \u001b[0mTotal inference pure compute time: 0:00:01 (0.080777 s / iter per device, on 1 devices)\n"}
,{"stream_name":"stdout","time":635.771225527,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mPreparing results for COCO format ...\n"}
,{"stream_name":"stdout","time":635.773198027,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mSaving results to ./outputs/coco_instances_results.json\n"}
,{"stream_name":"stdout","time":635.778019995,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mEvaluating predictions with unofficial COCO API...\n"}
,{"stream_name":"stdout","time":635.779417428,"data":"Loading and preparing results...\n"}
,{"stream_name":"stdout","time":635.779434434,"data":"DONE (t=0.00s)\n"}
,{"stream_name":"stdout","time":635.779440883,"data":"creating index...\n"}
,{"stream_name":"stdout","time":635.77944617,"data":"index created!\n"}
,{"stream_name":"stdout","time":635.779451855,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mEvaluate annotation type *bbox*\n"}
,{"stream_name":"stdout","time":635.789318341,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mCOCOeval_opt.evaluate() finished in 0.01 seconds.\n"}
,{"stream_name":"stdout","time":635.797159053,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mAccumulating evaluation results...\n"}
,{"stream_name":"stdout","time":635.807632373,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mCOCOeval_opt.accumulate() finished in 0.02 seconds.\n"}
,{"stream_name":"stdout","time":635.810643959,"data":" Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.302\n"}
,{"stream_name":"stdout","time":635.810661179,"data":" Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.474\n"}
,{"stream_name":"stdout","time":635.810671544,"data":" Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.357\n"}
,{"stream_name":"stdout","time":635.810677171,"data":" Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n"}
,{"stream_name":"stdout","time":635.810682026,"data":" Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.304\n"}
,{"stream_name":"stdout","time":635.810686646,"data":" Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.263\n"}
,{"stream_name":"stdout","time":635.810691178,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.138\n"}
,{"stream_name":"stdout","time":635.810695681,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.391\n"}
,{"stream_name":"stdout","time":635.810700604,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.392\n"}
,{"stream_name":"stdout","time":635.810705254,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n"}
,{"stream_name":"stdout","time":635.810710319,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.371\n"}
,{"stream_name":"stdout","time":635.810714862,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.364\n"}
,{"stream_name":"stdout","time":635.810719904,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mEvaluation results for bbox: \n"}
,{"stream_name":"stdout","time":635.810725438,"data":"|   AP   |  AP50  |  AP75  |  APs  |  APm   |  APl   |\n"}
,{"stream_name":"stdout","time":635.81073265,"data":"|:------:|:------:|:------:|:-----:|:------:|:------:|\n"}
,{"stream_name":"stdout","time":635.81074006,"data":"| 30.219 | 47.387 | 35.729 |  nan  | 30.435 | 26.317 |\n"}
,{"stream_name":"stdout","time":635.812444438,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mSome metrics cannot be computed and is shown as NaN.\n"}
,{"stream_name":"stdout","time":635.814914009,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mPer-category bbox AP: \n"}
,{"stream_name":"stdout","time":635.814931885,"data":"| category               | AP     | category   | AP     | category   | AP     |\n"}
,{"stream_name":"stdout","time":635.814941054,"data":"|:-----------------------|:-------|:-----------|:-------|:-----------|:-------|\n"}
,{"stream_name":"stdout","time":635.814950236,"data":"| leaf, flower and fruit | nan    | 0          | 11.429 | 1          | 39.127 |\n"}
,{"stream_name":"stdout","time":635.814955966,"data":"| 2                      | 40.100 |            |        |            |        |\n"}
,{"stream_name":"stdout","time":635.831025164,"data":"Loading and preparing results...\n"}
,{"stream_name":"stdout","time":635.831060554,"data":"DONE (t=0.00s)\n"}
,{"stream_name":"stdout","time":635.831066509,"data":"creating index...\n"}
,{"stream_name":"stdout","time":635.831071302,"data":"index created!\n"}
,{"stream_name":"stdout","time":635.831076148,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mEvaluate annotation type *segm*\n"}
,{"stream_name":"stdout","time":635.832967364,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mCOCOeval_opt.evaluate() finished in 0.01 seconds.\n"}
,{"stream_name":"stdout","time":635.834387149,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mAccumulating evaluation results...\n"}
,{"stream_name":"stdout","time":635.849730149,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.fast_eval_api]: \u001b[0mCOCOeval_opt.accumulate() finished in 0.02 seconds.\n"}
,{"stream_name":"stdout","time":635.852968257,"data":" Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.268\n"}
,{"stream_name":"stdout","time":635.853013325,"data":" Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.482\n"}
,{"stream_name":"stdout","time":635.85302032,"data":" Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.266\n"}
,{"stream_name":"stdout","time":635.853026725,"data":" Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n"}
,{"stream_name":"stdout","time":635.853032566,"data":" Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.290\n"}
,{"stream_name":"stdout","time":635.853037529,"data":" Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.233\n"}
,{"stream_name":"stdout","time":635.853043059,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.134\n"}
,{"stream_name":"stdout","time":635.853052344,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.349\n"}
,{"stream_name":"stdout","time":635.853058969,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.350\n"}
,{"stream_name":"stdout","time":635.853080544,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n"}
,{"stream_name":"stdout","time":635.853086828,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.347\n"}
,{"stream_name":"stdout","time":635.853104345,"data":" Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.324\n"}
,{"stream_name":"stdout","time":635.853111104,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mEvaluation results for segm: \n"}
,{"stream_name":"stdout","time":635.853117005,"data":"|   AP   |  AP50  |  AP75  |  APs  |  APm   |  APl   |\n"}
,{"stream_name":"stdout","time":635.853122229,"data":"|:------:|:------:|:------:|:-----:|:------:|:------:|\n"}
,{"stream_name":"stdout","time":635.853127204,"data":"| 26.769 | 48.197 | 26.573 |  nan  | 29.003 | 23.334 |\n"}
,{"stream_name":"stdout","time":635.854207133,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mSome metrics cannot be computed and is shown as NaN.\n"}
,{"stream_name":"stdout","time":635.85871157,"data":"\u001b[32m[09/23 07:45:31 d2.evaluation.coco_evaluation]: \u001b[0mPer-category segm AP: \n"}
,{"stream_name":"stdout","time":635.858754408,"data":"| category               | AP     | category   | AP     | category   | AP     |\n"}
,{"stream_name":"stdout","time":635.858761686,"data":"|:-----------------------|:-------|:-----------|:-------|:-----------|:-------|\n"}
,{"stream_name":"stdout","time":635.858767208,"data":"| leaf, flower and fruit | nan    | 0          | 11.675 | 1          | 31.041 |\n"}
,{"stream_name":"stdout","time":635.858772523,"data":"| 2                      | 37.590 |            |        |            |        |\n"}
,{"stream_name":"stdout","time":635.860120683,"data":"OrderedDict([('bbox', {'AP': 30.218943392039694, 'AP50': 47.386900130198846, 'AP75': 35.72921800473737, 'APs': nan, 'APm': 30.43451625382318, 'APl': 26.31694060377811, 'AP-leaf, flower and fruit': nan, 'AP-0': 11.42892373885882, 'AP-1': 39.12745560270313, 'AP-2': 40.10045083455714}), ('segm', {'AP': 26.768528027464377, 'AP50': 48.19729533929002, 'AP75': 26.573458292849743, 'APs': nan, 'APm': 29.0032162556915, 'APl': 23.334085433968955, 'AP-leaf, flower and fruit': nan, 'AP-0': 11.674782020116336, 'AP-1': 31.04055405540554, 'AP-2': 37.59024800687124})])\n"}
,{"stream_name":"stderr","time":641.251753977,"data":"/opt/conda/lib/python3.10/site-packages/traitlets/traitlets.py:2930: FutureWarning: --Exporter.preprocessors=[\"remove_papermill_header.RemovePapermillHeader\"] for containers is deprecated in traitlets 5.0. You can pass `--Exporter.preprocessors item` ... multiple times to add items to a list.\n"}
,{"stream_name":"stderr","time":641.252033612,"data":"  warn(\n"}
,{"stream_name":"stderr","time":641.271251502,"data":"[NbConvertApp] WARNING | Config option `kernel_spec_manager_class` not recognized by `NbConvertApp`.\n"}
,{"stream_name":"stderr","time":641.299639329,"data":"[NbConvertApp] Converting notebook __notebook__.ipynb to notebook\n"}
,{"stream_name":"stderr","time":641.812192464,"data":"[NbConvertApp] Writing 1563115 bytes to __notebook__.ipynb\n"}
,{"stream_name":"stderr","time":643.508675438,"data":"/opt/conda/lib/python3.10/site-packages/traitlets/traitlets.py:2930: FutureWarning: --Exporter.preprocessors=[\"nbconvert.preprocessors.ExtractOutputPreprocessor\"] for containers is deprecated in traitlets 5.0. You can pass `--Exporter.preprocessors item` ... multiple times to add items to a list.\n"}
,{"stream_name":"stderr","time":643.508732164,"data":"  warn(\n"}
,{"stream_name":"stderr","time":643.511626803,"data":"[NbConvertApp] WARNING | Config option `kernel_spec_manager_class` not recognized by `NbConvertApp`.\n"}
,{"stream_name":"stderr","time":643.556443524,"data":"[NbConvertApp] Converting notebook __notebook__.ipynb to html\n"}
,{"stream_name":"stderr","time":644.538437008,"data":"[NbConvertApp] Support files will be in __results___files/\n"}
,{"stream_name":"stderr","time":644.538518612,"data":"[NbConvertApp] Making directory __results___files\n"}
,{"stream_name":"stderr","time":644.539060619,"data":"[NbConvertApp] Making directory __results___files\n"}
,{"stream_name":"stderr","time":644.539504448,"data":"[NbConvertApp] Making directory __results___files\n"}
,{"stream_name":"stderr","time":644.540311438,"data":"[NbConvertApp] Writing 357130 bytes to __results__.html\n"}
]