anzorq commited on
Commit
531536b
1 Parent(s): 1729b87

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -191
README.md CHANGED
@@ -1,199 +1,126 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - kbd
5
+ datasets:
6
+ - anzorq/kbd_speech
7
+ - anzorq/sixuxar_yijiri_mak7
8
+ metrics:
9
+ - wer
10
+ pipeline_tag: automatic-speech-recognition
11
  ---
12
 
13
+ # Circassian (Kabardian) ASR Model
 
 
14
 
15
+ This is a fine-tuned model for Automatic Speech Recognition (ASR) in `kbd`, based on the `facebook/w2v-bert-2.0` model.
16
 
17
+ The model was trained on a combination of the `anzorq/kbd_speech` (filtered on `country=russia`) and `anzorq/sixuxar_yijiri_mak7` datasets.
18
 
19
  ## Model Details
20
 
21
+ - **Base Model**: facebook/w2v-bert-2.0
22
+ - **Language**: Kabardian
23
+ - **Task**: Automatic Speech Recognition (ASR)
24
+ - **Datasets**: anzorq/kbd_speech, anzorq/sixuxar_yijiri_mak7
25
+ - **Training Steps**: 5000
26
+
27
+ ## Training
28
+
29
+ The model was fine-tuned using the following training arguments:
30
+
31
+ ```python
32
+ TrainingArguments(
33
+ output_dir='output',
34
+ group_by_length=True,
35
+ per_device_train_batch_size=8,
36
+ gradient_accumulation_steps=2,
37
+ evaluation_strategy="steps",
38
+ num_train_epochs=10,
39
+ gradient_checkpointing=True,
40
+ fp16=True,
41
+ save_steps=1000,
42
+ eval_steps=500,
43
+ logging_steps=300,
44
+ learning_rate=5e-5,
45
+ warmup_steps=500,
46
+ save_total_limit=2,
47
+ push_to_hub=True,
48
+ report_to="wandb"
49
+ )
50
+ ```
51
+
52
+ ## Performance
53
+
54
+ The model's performance during training:
55
+
56
+ | Step | Training Loss | Validation Loss | Wer |
57
+ |------|---------------|-----------------|----------|
58
+ | 500 | 2.761100 | 0.572304 | 0.830552 |
59
+ | 1000 | 0.325700 | 0.352516 | 0.678261 |
60
+ | 1500 | 0.247000 | 0.271146 | 0.377438 |
61
+ | 2000 | 0.179300 | 0.235156 | 0.319859 |
62
+ | 2500 | 0.176100 | 0.229383 | 0.293537 |
63
+ | 3000 | 0.171600 | 0.208033 | 0.310458 |
64
+ | 3500 | 0.133200 | 0.199517 | 0.289542 |
65
+ | 4000 | 0.117900 | 0.208304 | 0.258989 | <-- this model
66
+ | 4500 | 0.145400 | 0.184942 | 0.285311 |
67
+ | 5000 | 0.129600 | 0.195167 | 0.372033 |
68
+ | 5500 | 0.122600 | 0.203584 | 0.386369 |
69
+ | 6000 | 0.196800 | 0.270521 | 0.687662 |
70
+
71
+ ## Note
72
+ Prior to training, specific character replacements were performed to reduce the tokenizer vocabulary by replacing digraphs with single characters. The replacements are as follows:
73
+ ```
74
+ гъ -> ɣ
75
+ дж -> j
76
+ дз -> ӡ
77
+ жь -> ʐ
78
+ кӏ -> қ
79
+ къ -> q
80
+ кхъ -> qҳ
81
+ лъ -> ɬ
82
+ лӏ -> ԯ
83
+ пӏ -> ԥ
84
+ тӏ -> ҭ
85
+ фӏ ->
86
+ хь -> h
87
+ хъ -> ҳ
88
+ цӏ -> ҵ
89
+ щӏ -> ɕ
90
+ я -> йа
91
+ ```
92
+ After obtaining the transcription, reversed replacements can be applied to restore the original characters.
93
+
94
+ ## Inference
95
+ ```python
96
+ import torchaudio
97
+ from transformers import pipeline
98
+
99
+ pipe = pipeline(model="anzorq/w2v-bert-2.0-kbd-v2", device=0)
100
+
101
+ reversed_replacements = {
102
+ 'ɣ': 'гъ', 'j': 'дж', 'ӡ': 'дз', 'ʐ': 'жь',
103
+ 'қ': 'кӏ', 'q': 'къ', 'qҳ': 'кхъ', 'ɬ': 'лъ',
104
+ 'ԯ': 'лӏ', 'ԥ': 'пӏ', 'ҭ': 'тӏ', 'ჶ': 'фӏ',
105
+ 'h': 'хь', 'ҳ': 'хъ', 'ҵ': 'цӏ', 'ɕ': 'щӏ',
106
+ 'йа': 'я'
107
+ }
108
+
109
+ def reverse_replace_symbols(text):
110
+ for orig, replacement in reversed_replacements.items():
111
+ text = text.replace(orig, replacement)
112
+ return text
113
+
114
+ def transcribe_speech(audio_path):
115
+ waveform, sample_rate = torchaudio.load(audio_path)
116
+ waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
117
+ torchaudio.save("temp.wav", waveform, 16000)
118
+ transcription = pipe("temp.wav", chunk_length_s=10)['text']
119
+ transcription = reverse_replace_symbols(transcription)
120
+ return transcription
121
+
122
+ audio_path = "audio.wav"
123
+ transcription = transcribe_speech(audio_path)
124
+ print(f"Transcription: {transcription}")
125
+
126
+ ```