Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,126 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- kbd
|
5 |
+
datasets:
|
6 |
+
- anzorq/kbd_speech
|
7 |
+
- anzorq/sixuxar_yijiri_mak7
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
pipeline_tag: automatic-speech-recognition
|
11 |
---
|
12 |
|
13 |
+
# Circassian (Kabardian) ASR Model
|
|
|
|
|
14 |
|
15 |
+
This is a fine-tuned model for Automatic Speech Recognition (ASR) in `kbd`, based on the `facebook/w2v-bert-2.0` model.
|
16 |
|
17 |
+
The model was trained on a combination of the `anzorq/kbd_speech` (filtered on `country=russia`) and `anzorq/sixuxar_yijiri_mak7` datasets.
|
18 |
|
19 |
## Model Details
|
20 |
|
21 |
+
- **Base Model**: facebook/w2v-bert-2.0
|
22 |
+
- **Language**: Kabardian
|
23 |
+
- **Task**: Automatic Speech Recognition (ASR)
|
24 |
+
- **Datasets**: anzorq/kbd_speech, anzorq/sixuxar_yijiri_mak7
|
25 |
+
- **Training Steps**: 5000
|
26 |
+
|
27 |
+
## Training
|
28 |
+
|
29 |
+
The model was fine-tuned using the following training arguments:
|
30 |
+
|
31 |
+
```python
|
32 |
+
TrainingArguments(
|
33 |
+
output_dir='output',
|
34 |
+
group_by_length=True,
|
35 |
+
per_device_train_batch_size=8,
|
36 |
+
gradient_accumulation_steps=2,
|
37 |
+
evaluation_strategy="steps",
|
38 |
+
num_train_epochs=10,
|
39 |
+
gradient_checkpointing=True,
|
40 |
+
fp16=True,
|
41 |
+
save_steps=1000,
|
42 |
+
eval_steps=500,
|
43 |
+
logging_steps=300,
|
44 |
+
learning_rate=5e-5,
|
45 |
+
warmup_steps=500,
|
46 |
+
save_total_limit=2,
|
47 |
+
push_to_hub=True,
|
48 |
+
report_to="wandb"
|
49 |
+
)
|
50 |
+
```
|
51 |
+
|
52 |
+
## Performance
|
53 |
+
|
54 |
+
The model's performance during training:
|
55 |
+
|
56 |
+
| Step | Training Loss | Validation Loss | Wer |
|
57 |
+
|------|---------------|-----------------|----------|
|
58 |
+
| 500 | 2.761100 | 0.572304 | 0.830552 |
|
59 |
+
| 1000 | 0.325700 | 0.352516 | 0.678261 |
|
60 |
+
| 1500 | 0.247000 | 0.271146 | 0.377438 |
|
61 |
+
| 2000 | 0.179300 | 0.235156 | 0.319859 |
|
62 |
+
| 2500 | 0.176100 | 0.229383 | 0.293537 |
|
63 |
+
| 3000 | 0.171600 | 0.208033 | 0.310458 |
|
64 |
+
| 3500 | 0.133200 | 0.199517 | 0.289542 |
|
65 |
+
| 4000 | 0.117900 | 0.208304 | 0.258989 | <-- this model
|
66 |
+
| 4500 | 0.145400 | 0.184942 | 0.285311 |
|
67 |
+
| 5000 | 0.129600 | 0.195167 | 0.372033 |
|
68 |
+
| 5500 | 0.122600 | 0.203584 | 0.386369 |
|
69 |
+
| 6000 | 0.196800 | 0.270521 | 0.687662 |
|
70 |
+
|
71 |
+
## Note
|
72 |
+
Prior to training, specific character replacements were performed to reduce the tokenizer vocabulary by replacing digraphs with single characters. The replacements are as follows:
|
73 |
+
```
|
74 |
+
гъ -> ɣ
|
75 |
+
дж -> j
|
76 |
+
дз -> ӡ
|
77 |
+
жь -> ʐ
|
78 |
+
кӏ -> қ
|
79 |
+
къ -> q
|
80 |
+
кхъ -> qҳ
|
81 |
+
лъ -> ɬ
|
82 |
+
лӏ -> ԯ
|
83 |
+
пӏ -> ԥ
|
84 |
+
тӏ -> ҭ
|
85 |
+
фӏ -> ჶ
|
86 |
+
хь -> h
|
87 |
+
хъ -> ҳ
|
88 |
+
цӏ -> ҵ
|
89 |
+
щӏ -> ɕ
|
90 |
+
я -> йа
|
91 |
+
```
|
92 |
+
After obtaining the transcription, reversed replacements can be applied to restore the original characters.
|
93 |
+
|
94 |
+
## Inference
|
95 |
+
```python
|
96 |
+
import torchaudio
|
97 |
+
from transformers import pipeline
|
98 |
+
|
99 |
+
pipe = pipeline(model="anzorq/w2v-bert-2.0-kbd-v2", device=0)
|
100 |
+
|
101 |
+
reversed_replacements = {
|
102 |
+
'ɣ': 'гъ', 'j': 'дж', 'ӡ': 'дз', 'ʐ': 'жь',
|
103 |
+
'қ': 'кӏ', 'q': 'къ', 'qҳ': 'кхъ', 'ɬ': 'лъ',
|
104 |
+
'ԯ': 'лӏ', 'ԥ': 'пӏ', 'ҭ': 'тӏ', 'ჶ': 'фӏ',
|
105 |
+
'h': 'хь', 'ҳ': 'хъ', 'ҵ': 'цӏ', 'ɕ': 'щӏ',
|
106 |
+
'йа': 'я'
|
107 |
+
}
|
108 |
+
|
109 |
+
def reverse_replace_symbols(text):
|
110 |
+
for orig, replacement in reversed_replacements.items():
|
111 |
+
text = text.replace(orig, replacement)
|
112 |
+
return text
|
113 |
+
|
114 |
+
def transcribe_speech(audio_path):
|
115 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
116 |
+
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
|
117 |
+
torchaudio.save("temp.wav", waveform, 16000)
|
118 |
+
transcription = pipe("temp.wav", chunk_length_s=10)['text']
|
119 |
+
transcription = reverse_replace_symbols(transcription)
|
120 |
+
return transcription
|
121 |
+
|
122 |
+
audio_path = "audio.wav"
|
123 |
+
transcription = transcribe_speech(audio_path)
|
124 |
+
print(f"Transcription: {transcription}")
|
125 |
+
|
126 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|