File size: 1,985 Bytes
961fd6f 9a184d6 961fd6f 9a184d6 961fd6f 9a184d6 961fd6f 9a184d6 961fd6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: xlm-roberta-base
metrics:
- accuracy
- f1
model-index:
- name: loha_fine_tuned_rte_XLMroberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# loha_fine_tuned_rte_XLMroberta
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0980
- Accuracy: 0.6207
- F1: 0.6090
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 0.8165 | 1.7241 | 50 | 0.7174 | 0.4828 | 0.3781 |
| 0.7386 | 3.4483 | 100 | 0.6616 | 0.6897 | 0.6523 |
| 0.7293 | 5.1724 | 150 | 0.7683 | 0.5172 | 0.4660 |
| 0.6773 | 6.8966 | 200 | 1.1129 | 0.4483 | 0.4324 |
| 0.4623 | 8.6207 | 250 | 1.7863 | 0.5862 | 0.5892 |
| 0.2532 | 10.3448 | 300 | 2.8440 | 0.5862 | 0.5483 |
| 0.0813 | 12.0690 | 350 | 3.0842 | 0.5517 | 0.5484 |
| 0.0478 | 13.7931 | 400 | 3.0980 | 0.6207 | 0.6090 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.40.2
- Pytorch 2.1.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |