antoniomae1234's picture
changes in flenema
2493d72 verified
from torch import nn
from torch.nn.utils import weight_norm
class ResidualStack(nn.Module):
def __init__(self, channels, num_res_blocks, kernel_size):
super(ResidualStack, self).__init__()
assert (kernel_size - 1) % 2 == 0, " [!] kernel_size has to be odd."
base_padding = (kernel_size - 1) // 2
self.blocks = nn.ModuleList()
for idx in range(num_res_blocks):
layer_kernel_size = kernel_size
layer_dilation = layer_kernel_size**idx
layer_padding = base_padding * layer_dilation
self.blocks += [nn.Sequential(
nn.LeakyReLU(0.2),
nn.ReflectionPad1d(layer_padding),
weight_norm(
nn.Conv1d(channels,
channels,
kernel_size=kernel_size,
dilation=layer_dilation,
bias=True)),
nn.LeakyReLU(0.2),
weight_norm(
nn.Conv1d(channels, channels, kernel_size=1, bias=True)),
)]
self.shortcuts = nn.ModuleList([
weight_norm(nn.Conv1d(channels, channels, kernel_size=1,
bias=True)) for i in range(num_res_blocks)
])
def forward(self, x):
for block, shortcut in zip(self.blocks, self.shortcuts):
x = shortcut(x) + block(x)
return x
def remove_weight_norm(self):
for block, shortcut in zip(self.blocks, self.shortcuts):
nn.utils.remove_weight_norm(block[2])
nn.utils.remove_weight_norm(block[4])
nn.utils.remove_weight_norm(shortcut)