|
import argparse |
|
import glob |
|
import os |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
import torch |
|
from TTS.speaker_encoder.model import SpeakerEncoder |
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.utils.io import load_config |
|
from TTS.tts.utils.speakers import save_speaker_mapping |
|
from TTS.tts.datasets.preprocess import load_meta_data |
|
|
|
parser = argparse.ArgumentParser( |
|
description='Compute embedding vectors for each wav file in a dataset. If "target_dataset" is defined, it generates "speakers.json" necessary for training a multi-speaker model.') |
|
parser.add_argument( |
|
'model_path', |
|
type=str, |
|
help='Path to model outputs (checkpoint, tensorboard etc.).') |
|
parser.add_argument( |
|
'config_path', |
|
type=str, |
|
help='Path to config file for training.', |
|
) |
|
parser.add_argument( |
|
'data_path', |
|
type=str, |
|
help='Data path for wav files - directory or CSV file') |
|
parser.add_argument( |
|
'output_path', |
|
type=str, |
|
help='path for training outputs.') |
|
parser.add_argument( |
|
'--target_dataset', |
|
type=str, |
|
default='', |
|
help='Target dataset to pick a processor from TTS.tts.dataset.preprocess. Necessary to create a speakers.json file.' |
|
) |
|
parser.add_argument( |
|
'--use_cuda', type=bool, help='flag to set cuda.', default=False |
|
) |
|
parser.add_argument( |
|
'--separator', type=str, help='Separator used in file if CSV is passed for data_path', default='|' |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
c = load_config(args.config_path) |
|
ap = AudioProcessor(**c['audio']) |
|
|
|
data_path = args.data_path |
|
split_ext = os.path.splitext(data_path) |
|
sep = args.separator |
|
|
|
if args.target_dataset != '': |
|
|
|
dataset_config = [ |
|
{ |
|
"name": args.target_dataset, |
|
"path": args.data_path, |
|
"meta_file_train": None, |
|
"meta_file_val": None |
|
}, |
|
] |
|
wav_files, _ = load_meta_data(dataset_config, eval_split=False) |
|
output_files = [wav_file[1].replace(data_path, args.output_path).replace( |
|
'.wav', '.npy') for wav_file in wav_files] |
|
else: |
|
|
|
if len(split_ext) > 0 and split_ext[1].lower() == '.csv': |
|
|
|
print(f'CSV file: {data_path}') |
|
with open(data_path) as f: |
|
wav_path = os.path.join(os.path.dirname(data_path), 'wavs') |
|
wav_files = [] |
|
print(f'Separator is: {sep}') |
|
for line in f: |
|
components = line.split(sep) |
|
if len(components) != 2: |
|
print("Invalid line") |
|
continue |
|
wav_file = os.path.join(wav_path, components[0] + '.wav') |
|
|
|
if os.path.exists(wav_file): |
|
wav_files.append(wav_file) |
|
print(f'Count of wavs imported: {len(wav_files)}') |
|
else: |
|
|
|
wav_files = glob.glob(data_path + '/**/*.wav', recursive=True) |
|
|
|
output_files = [wav_file.replace(data_path, args.output_path).replace( |
|
'.wav', '.npy') for wav_file in wav_files] |
|
|
|
for output_file in output_files: |
|
os.makedirs(os.path.dirname(output_file), exist_ok=True) |
|
|
|
|
|
model = SpeakerEncoder(**c.model) |
|
model.load_state_dict(torch.load(args.model_path)['model']) |
|
model.eval() |
|
if args.use_cuda: |
|
model.cuda() |
|
|
|
|
|
speaker_mapping = {} |
|
for idx, wav_file in enumerate(tqdm(wav_files)): |
|
if isinstance(wav_file, list): |
|
speaker_name = wav_file[2] |
|
wav_file = wav_file[1] |
|
|
|
mel_spec = ap.melspectrogram(ap.load_wav(wav_file, sr=ap.sample_rate)).T |
|
mel_spec = torch.FloatTensor(mel_spec[None, :, :]) |
|
if args.use_cuda: |
|
mel_spec = mel_spec.cuda() |
|
embedd = model.compute_embedding(mel_spec) |
|
embedd = embedd.detach().cpu().numpy() |
|
np.save(output_files[idx], embedd) |
|
|
|
if args.target_dataset != '': |
|
|
|
wav_file_name = os.path.basename(wav_file) |
|
speaker_mapping[wav_file_name] = {} |
|
speaker_mapping[wav_file_name]['name'] = speaker_name |
|
speaker_mapping[wav_file_name]['embedding'] = embedd.flatten().tolist() |
|
|
|
if args.target_dataset != '': |
|
|
|
mapping_file_path = os.path.join(args.output_path, 'speakers.json') |
|
save_speaker_mapping(args.output_path, speaker_mapping) |
|
|