antoinelouis commited on
Commit
bd887c4
·
1 Parent(s): f010218

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -15
README.md CHANGED
@@ -10,7 +10,7 @@ tags:
10
  - sentence-similarity
11
  library_name: sentence-transformers
12
  ---
13
- # crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR
14
 
15
  This is a [sentence-transformers](https://www.SBERT.net) model trained on the **French** portion of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset.
16
 
@@ -33,7 +33,7 @@ Then you can use the model like this:
33
  from sentence_transformers import CrossEncoder
34
  pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
35
 
36
- model = CrossEncoder('antoinelouis/crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR')
37
  scores = model.predict(pairs)
38
  print(scores)
39
  ```
@@ -46,8 +46,8 @@ Without [sentence-transformers](https://www.SBERT.net), you can use the model as
46
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
47
  import torch
48
 
49
- model = AutoModelForSequenceClassification.from_pretrained('antoinelouis/crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR')
50
- tokenizer = AutoTokenizer.from_pretrained('antoinelouis/crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR')
51
 
52
  pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
53
  features = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
@@ -65,15 +65,18 @@ We evaluated the model on 500 random queries from the mMARCO-fr train set (which
65
 
66
  Below, we compare the model performance with other cross-encoder models fine-tuned on the same dataset. We report the R-precision (RP), mean reciprocal rank (MRR), and recall at various cut-offs (R@k).
67
 
68
- | | model | Size | RP | MRR@10 | R@10(↑) | R@20 | R@50 | R@100 |
69
- |---:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------:|-------------:|---------:|------------:|------------:|------------:|-------------:|
70
- | 1 | [crossencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-camembert-base-mmarcoFR) | 443MB | 35.65 | 50.44 | 82.95 | 91.50 | 96.80 | 98.80 |
71
- | 2 | [crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR) | 471MB | 34.37 | 51.01 | 82.23 | 90.60 | 96.45 | 98.40 |
72
- | 3 | [crossencoder-mMiniLMv2-L12-H384-mmarco-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L12-H384-mmarco-mmarcoFR) | 471MB | 34.22 | 49.20 | 81.70 | 90.90 | 97.10 | 98.90 |
73
- | 4 | [crossencoder-mpnet-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mpnet-base-mmarcoFR) | 438MB | 29.68 | 46.13 | 80.45 | 87.90 | 93.15 | 96.60 |
74
- | 5 | [crossencoder-distilcamembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-distilcamembert-base-mmarcoFR) | 272MB | 27.28 | 43.71 | 80.30 | 89.10 | 95.55 | 98.60 |
75
- | 6 | [crossencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR) | 443MB | 28.32 | 45.28 | 79.22 | 87.15 | 93.15 | 95.75 |
76
- | 7 | **crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR** | 428MB | 33.92 | 49.33 | 79.00 | 88.35 | 94.80 | 98.20 |
 
 
 
77
 
78
  ## Training
79
  ***
@@ -96,10 +99,10 @@ We used the French version of the [mMARCO](https://huggingface.co/datasets/unica
96
  ```bibtex
97
  @online{louis2023,
98
  author = 'Antoine Louis',
99
- title = 'crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR: A Cross-Encoder Model Trained on 1M sentence pairs in French',
100
  publisher = 'Hugging Face',
101
  month = 'september',
102
  year = '2023',
103
- url = 'https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR',
104
  }
105
  ```
 
10
  - sentence-similarity
11
  library_name: sentence-transformers
12
  ---
13
+ # crossencoder-mMiniLMv2-L6-mmarcoFR
14
 
15
  This is a [sentence-transformers](https://www.SBERT.net) model trained on the **French** portion of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset.
16
 
 
33
  from sentence_transformers import CrossEncoder
34
  pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
35
 
36
+ model = CrossEncoder('antoinelouis/crossencoder-mMiniLMv2-L6-mmarcoFR')
37
  scores = model.predict(pairs)
38
  print(scores)
39
  ```
 
46
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
47
  import torch
48
 
49
+ model = AutoModelForSequenceClassification.from_pretrained('antoinelouis/crossencoder-mMiniLMv2-L6-mmarcoFR')
50
+ tokenizer = AutoTokenizer.from_pretrained('antoinelouis/crossencoder-mMiniLMv2-L6-mmarcoFR')
51
 
52
  pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
53
  features = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
 
65
 
66
  Below, we compare the model performance with other cross-encoder models fine-tuned on the same dataset. We report the R-precision (RP), mean reciprocal rank (MRR), and recall at various cut-offs (R@k).
67
 
68
+ | | model | Vocab. | #Param. | Size | RP | MRR@10 | R@10(↑) | R@20 | R@50 | R@100 |
69
+ |---:|:-----------------------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|-------:|---------:|---------:|-------:|-------:|--------:|
70
+ | 1 | [crossencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-camembert-base-mmarcoFR) | fr | 110M | 443MB | 35.65 | 50.44 | 82.95 | 91.50 | 96.80 | 98.80 |
71
+ | 2 | [crossencoder-mMiniLMv2-L12-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L12-mmarcoFR) | fr,99+ | 118M | 471MB | 34.37 | 51.01 | 82.23 | 90.60 | 96.45 | 98.40 |
72
+ | 3 | [crossencoder-mpnet-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mpnet-base-mmarcoFR) | en | 109M | 438MB | 29.68 | 46.13 | 80.45 | 87.90 | 93.15 | 96.60 |
73
+ | 4 | [crossencoder-distilcamembert-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-distilcamembert-mmarcoFR) | fr | 68M | 272MB | 27.28 | 43.71 | 80.30 | 89.10 | 95.55 | 98.60 |
74
+ | 5 | [crossencoder-electra-base-french-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-electra-base-french-mmarcoFR) | fr | 110M | 443MB | 28.32 | 45.28 | 79.22 | 87.15 | 93.15 | 95.75 |
75
+ | 6 | **crossencoder-mMiniLMv2-L6-mmarcoFR** | fr,99+ | 107M | 428MB | 33.92 | 49.33 | 79.00 | 88.35 | 94.80 | 98.20 |
76
+ | 7 | [crossencoder-MiniLM-L12-msmarco-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-MiniLM-L12-msmarco-mmarcoFR) | en | 33M | 134MB | 29.07 | 44.41 | 77.83 | 88.10 | 95.55 | 99.00 |
77
+ | 8 | [crossencoder-MiniLM-L6-msmarco-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-MiniLM-L6-msmarco-mmarcoFR) | en | 23M | 91MB | 32.92 | 47.56 | 77.27 | 88.15 | 94.85 | 98.15 |
78
+ | 9 | [crossencoder-MiniLM-L4-msmarco-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-MiniLM-L4-msmarco-mmarcoFR) | en | 19M | 77MB | 30.98 | 46.22 | 76.35 | 85.80 | 94.35 | 97.55 |
79
+ | 10 | [crossencoder-MiniLM-L2-msmarco-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-MiniLM-L2-msmarco-mmarcoFR) | en | 15M | 62MB | 30.82 | 44.30 | 72.03 | 82.65 | 93.35 | 98.10 |
80
 
81
  ## Training
82
  ***
 
99
  ```bibtex
100
  @online{louis2023,
101
  author = 'Antoine Louis',
102
+ title = 'crossencoder-mMiniLMv2-L6-mmarcoFR: A Cross-Encoder Model Trained on 1M sentence pairs in French',
103
  publisher = 'Hugging Face',
104
  month = 'september',
105
  year = '2023',
106
+ url = 'https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L6-mmarcoFR',
107
  }
108
  ```