|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
grid_size = 20 |
|
|
|
|
|
wealth_data = torch.rand((grid_size, grid_size)) |
|
|
|
|
|
class WealthNet(nn.Module): |
|
def __init__(self): |
|
super(WealthNet, self).__init__() |
|
self.fc1 = nn.Linear(grid_size * grid_size, 128) |
|
self.fc2 = nn.Linear(128, grid_size * grid_size) |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.fc1(x)) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
net = WealthNet() |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(net.parameters(), lr=0.01) |
|
|
|
|
|
target_wealth = torch.zeros((grid_size, grid_size)) |
|
target_wealth[-5:, -5:] = 1 |
|
|
|
|
|
input_data = wealth_data.view(-1) |
|
target_data = target_wealth.view(-1) |
|
|
|
|
|
epochs = 500 |
|
for epoch in range(epochs): |
|
optimizer.zero_grad() |
|
output = net(input_data) |
|
loss = criterion(output, target_data) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
output_grid = output.detach().view(grid_size, grid_size) |
|
|
|
|
|
fig, axes = plt.subplots(1, 2, figsize=(12, 6)) |
|
axes[0].imshow(wealth_data, cmap='viridis') |
|
axes[0].set_title('Original Wealth Distribution') |
|
axes[1].imshow(output_grid, cmap='viridis') |
|
axes[1].set_title('Directed Wealth Distribution') |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
grid_size = 20 |
|
|
|
|
|
wealth_data = torch.rand((grid_size, grid_size)) |
|
|
|
|
|
class WealthNet(nn.Module): |
|
def __init__(self): |
|
super(WealthNet, self).__init__() |
|
self.fc1 = nn.Linear(grid_size * grid_size, 128) |
|
self.fc2 = nn.Linear(128, 128) |
|
self.fc3 = nn.Linear(128, grid_size * grid_size) |
|
self.infrared_layer = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.fc1(x)) |
|
stored_wealth = torch.relu(self.fc2(x)) |
|
infrared_energy = self.infrared_layer(stored_wealth) |
|
x = self.fc3(infrared_energy) |
|
return x, stored_wealth, infrared_energy |
|
|
|
|
|
net = WealthNet() |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(net.parameters(), lr=0.01) |
|
|
|
|
|
target_wealth = torch.zeros((grid_size, grid_size)) |
|
target_wealth[-5:, -5:] = 1 |
|
|
|
|
|
input_data = wealth_data.view(-1) |
|
target_data = target_wealth.view(-1) |
|
|
|
|
|
epochs = 500 |
|
for epoch in range(epochs): |
|
optimizer.zero_grad() |
|
output, stored_wealth, infrared_energy = net(input_data) |
|
loss = criterion(output, target_data) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
output_grid = output.detach().view(grid_size, grid_size) |
|
stored_wealth_grid = stored_wealth.detach().view(128) |
|
infrared_energy_grid = infrared_energy.detach().view(128) |
|
|
|
|
|
fig, axes = plt.subplots(1, 4, figsize=(20, 6)) |
|
axes[0].imshow(wealth_data, cmap='viridis') |
|
axes[0].set_title('Original Wealth Distribution') |
|
axes[1].imshow(output_grid, cmap='viridis') |
|
axes[1].set_title('Directed Wealth Distribution') |
|
axes[2].plot(stored_wealth_grid.numpy()) |
|
axes[2].set_title('Stored Wealth Data (1D)') |
|
axes[3].plot(infrared_energy_grid.numpy()) |
|
axes[3].set_title('Infrared Energy (1D)') |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
grid_size = 20 |
|
|
|
|
|
wealth_data = torch.rand((grid_size, grid_size)) |
|
|
|
|
|
class WealthNet(nn.Module): |
|
def __init__(self): |
|
super(WealthNet, self).__init__() |
|
self.fc1 = nn.Linear(grid_size * grid_size, 128) |
|
self.fc2 = nn.Linear(128, 128) |
|
self.fc3 = nn.Linear(128, grid_size * grid_size) |
|
self.infrared_layer = nn.Sigmoid() |
|
|
|
|
|
def forward(self, x): |
|
x = torch.relu(self.fc1(x)) |
|
stored_wealth = torch.relu(self.fc2(x)) |
|
protected_wealth = self.protection_layer(stored_wealth) |
|
infrared_energy = self.infrared_layer(protected_wealth) |
|
x = self.fc3(infrared_energy) |
|
return x, stored_wealth, protected_wealth, infrared_energy |
|
|
|
|
|
class GaussianNoise(nn.Module): |
|
def __init__(self, stddev): |
|
super(GaussianNoise, self).__init__() |
|
self.stddev = stddev |
|
|
|
def forward(self, x): |
|
if self.training: |
|
noise = torch.randn_like(x) * self.stddev |
|
return x + noise |
|
return x |
|
|
|
|
|
net = WealthNet() |
|
|
|
net.protection_layer = GaussianNoise(0.1) |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(net.parameters(), lr=0.01) |
|
|
|
|
|
target_wealth = torch.zeros((grid_size, grid_size)) |
|
target_wealth[-5:, -5:] = 1 |
|
|
|
|
|
input_data = wealth_data.view(-1) |
|
target_data = target_wealth.view(-1) |
|
|
|
|
|
epochs = 500 |
|
for epoch in range(epochs): |
|
optimizer.zero_grad() |
|
output, stored_wealth, protected_wealth, infrared_energy = net(input_data) |
|
loss = criterion(output, target_data) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
output_grid = output.detach().view(grid_size, grid_size) |
|
stored_wealth_grid = stored_wealth.detach().view(128) |
|
protected_wealth_grid = protected_wealth.detach().view(128) |
|
infrared_energy_grid = infrared_energy.detach().view(128) |
|
|
|
|
|
fig, axes = plt.subplots(1, 5, figsize=(25, 6)) |
|
axes[0].imshow(wealth_data, cmap='viridis') |
|
axes[0].set_title('Original Wealth Distribution') |
|
axes[1].imshow(output_grid, cmap='viridis') |
|
axes[1].set_title('Directed Wealth Distribution') |
|
axes[2].plot(stored_wealth_grid.numpy()) |
|
axes[2].set_title('Stored Wealth Data (1D)') |
|
axes[3].plot(protected_wealth_grid.numpy()) |
|
axes[3].set_title('Protected Wealth Data (1D)') |
|
axes[4].plot(infrared_energy_grid) |