antitheft159
commited on
Delete securewealth_transmittor.py
Browse files- securewealth_transmittor.py +0 -257
securewealth_transmittor.py
DELETED
@@ -1,257 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
# Define a simple neural network to generate random frequencies
|
5 |
-
class FrequencyMaskingNet(nn.Module):
|
6 |
-
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
7 |
-
super(FrequencyMaskingNet, self).__init__()
|
8 |
-
|
9 |
-
self.fc1 = nn.Linear(input_size, hidden_size)
|
10 |
-
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
11 |
-
self.fc3 = nn.Linear(hidden_size, output_size)
|
12 |
-
self.relu = nn.ReLU()
|
13 |
-
|
14 |
-
def forward(self, x):
|
15 |
-
x = self.relu(self.fc1(x))
|
16 |
-
x = self.relu(self.fc2(x))
|
17 |
-
x = self.fc3(x)
|
18 |
-
return x
|
19 |
-
|
20 |
-
# Function to create random frequencies to mask IP data
|
21 |
-
def generate_frequencies(ip, model, iterations=100):
|
22 |
-
# Convert the IP address (dummy) into tensor format
|
23 |
-
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
|
24 |
-
|
25 |
-
# Create a list to store frequency signals
|
26 |
-
frequencies = []
|
27 |
-
|
28 |
-
# Iterate and generate frequencies using the neural network
|
29 |
-
for _ in range(iterations):
|
30 |
-
# Generate a masked frequency
|
31 |
-
frequency = model(ip_tensor)
|
32 |
-
frequencies.append(frequency.item())
|
33 |
-
|
34 |
-
return frequencies
|
35 |
-
|
36 |
-
# Initialize the neural network
|
37 |
-
model = FrequencyMaskingNet()
|
38 |
-
|
39 |
-
# Example IP address to be masked (as a float for simplicity, convert if needed)
|
40 |
-
ip_address = 192.168 # Example, could use a different encoding for real IPs
|
41 |
-
|
42 |
-
# Generate pseudo-random frequencies to mask the IP
|
43 |
-
masked_frequencies = generate_frequencies(ip_address, model)
|
44 |
-
|
45 |
-
print(masked_frequencies)
|
46 |
-
|
47 |
-
import torch
|
48 |
-
import torch.nn as nn
|
49 |
-
import matplotlib.pyplot as plt
|
50 |
-
|
51 |
-
# Define the neural network for generating pseudo-random frequencies
|
52 |
-
class FrequencyMaskingNet(nn.Module):
|
53 |
-
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
54 |
-
super(FrequencyMaskingNet, self).__init__()
|
55 |
-
|
56 |
-
self.fc1 = nn.Linear(input_size, hidden_size)
|
57 |
-
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
58 |
-
self.fc3 = nn.Linear(hidden_size, output_size)
|
59 |
-
self.relu = nn.ReLU()
|
60 |
-
|
61 |
-
def forward(self, x):
|
62 |
-
x = self.relu(self.fc1(x))
|
63 |
-
x = self.relu(self.fc2(x))
|
64 |
-
x = self.fc3(x)
|
65 |
-
return x
|
66 |
-
|
67 |
-
# Function to create random frequencies to mask IP data
|
68 |
-
def generate_frequencies(ip, model, iterations=100):
|
69 |
-
# Convert the IP address (dummy) into tensor format
|
70 |
-
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
|
71 |
-
|
72 |
-
# Create a list to store frequency signals
|
73 |
-
frequencies = []
|
74 |
-
|
75 |
-
# Iterate and generate frequencies using the neural network
|
76 |
-
for _ in range(iterations):
|
77 |
-
# Generate a masked frequency
|
78 |
-
frequency = model(ip_tensor)
|
79 |
-
frequencies.append(frequency.item())
|
80 |
-
|
81 |
-
return frequencies
|
82 |
-
|
83 |
-
# Function to visualize frequencies as a waveform
|
84 |
-
def plot_frequencies(frequencies):
|
85 |
-
plt.figure(figsize=(10, 4))
|
86 |
-
plt.plot(frequencies, color='b', label="Masked Frequencies")
|
87 |
-
plt.title("Generated Frequency Waveform for IP Masking")
|
88 |
-
plt.xlabel("Iterations")
|
89 |
-
plt.ylabel("Frequency Amplitude")
|
90 |
-
plt.grid(True)
|
91 |
-
plt.legend()
|
92 |
-
plt.show()
|
93 |
-
|
94 |
-
# Initialize the neural network
|
95 |
-
model = FrequencyMaskingNet()
|
96 |
-
|
97 |
-
# Example IP address to be masked (as a float for simplicity)
|
98 |
-
ip_address = 192.168 # Example, you can encode the IP better in practice
|
99 |
-
|
100 |
-
# Generate pseudo-random frequencies to mask the IP
|
101 |
-
masked_frequencies = generate_frequencies(ip_address, model)
|
102 |
-
|
103 |
-
# Visualize the generated frequencies as a waveform
|
104 |
-
plot_frequencies(masked_frequencies)
|
105 |
-
|
106 |
-
import torch
|
107 |
-
import torch.nn as nn
|
108 |
-
import matplotlib.pyplot as plt
|
109 |
-
import numpy as np
|
110 |
-
|
111 |
-
# Define the neural network for generating pseudo-random frequencies
|
112 |
-
class FrequencyMaskingNet(nn.Module):
|
113 |
-
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
114 |
-
super(FrequencyMaskingNet, self).__init__()
|
115 |
-
|
116 |
-
self.fc1 = nn.Linear(input_size, hidden_size)
|
117 |
-
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
118 |
-
self.fc3 = nn.Linear(hidden_size, output_size)
|
119 |
-
self.relu = nn.ReLU()
|
120 |
-
|
121 |
-
def forward(self, x):
|
122 |
-
x = self.relu(self.fc1(x))
|
123 |
-
x = self.relu(self.fc2(x))
|
124 |
-
x = self.fc3(x)
|
125 |
-
return x
|
126 |
-
|
127 |
-
# Function to create random frequencies to mask IP data
|
128 |
-
def generate_frequencies(ip, model, iterations=100):
|
129 |
-
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
|
130 |
-
frequencies = []
|
131 |
-
|
132 |
-
for _ in range(iterations):
|
133 |
-
frequency = model(ip_tensor)
|
134 |
-
frequencies.append(frequency.item())
|
135 |
-
|
136 |
-
return frequencies
|
137 |
-
|
138 |
-
# Function to generate a wealth signal that transmits in the direction of energy (e.g., linear increase)
|
139 |
-
def generate_wealth_signal(iterations=100):
|
140 |
-
# Simulate wealth signal as a sine wave with increasing amplitude (simulating directional energy)
|
141 |
-
time = np.linspace(0, 10, iterations)
|
142 |
-
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
|
143 |
-
return wealth_signal
|
144 |
-
|
145 |
-
# Function to visualize frequencies as a waveform
|
146 |
-
def plot_frequencies(frequencies, wealth_signal):
|
147 |
-
plt.figure(figsize=(10, 4))
|
148 |
-
plt.plot(frequencies, color='b', label="Masked Frequencies")
|
149 |
-
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
|
150 |
-
plt.title("Generated Frequency Waveform with Wealth Signal")
|
151 |
-
plt.xlabel("Iterations")
|
152 |
-
plt.ylabel("Amplitude")
|
153 |
-
plt.grid(True)
|
154 |
-
plt.legend()
|
155 |
-
plt.show()
|
156 |
-
|
157 |
-
# Initialize the neural network
|
158 |
-
model = FrequencyMaskingNet()
|
159 |
-
|
160 |
-
# Example IP address to be masked (as a float for simplicity)
|
161 |
-
ip_address = 192.168
|
162 |
-
|
163 |
-
# Generate pseudo-random frequencies to mask the IP
|
164 |
-
masked_frequencies = generate_frequencies(ip_address, model)
|
165 |
-
|
166 |
-
# Generate a wealth signal that grows in the direction of energy
|
167 |
-
wealth_signal = generate_wealth_signal(len(masked_frequencies))
|
168 |
-
|
169 |
-
# Visualize the generated frequencies and wealth signal
|
170 |
-
plot_frequencies(masked_frequencies, wealth_signal)
|
171 |
-
|
172 |
-
import torch
|
173 |
-
import torch.nn as nn
|
174 |
-
import matplotlib.pyplot as plt
|
175 |
-
import numpy as np
|
176 |
-
|
177 |
-
# Define the neural network for generating pseudo-random frequencies
|
178 |
-
class FrequencyMaskingNet(nn.Module):
|
179 |
-
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
180 |
-
super(FrequencyMaskingNet, self).__init__()
|
181 |
-
|
182 |
-
self.fc1 = nn.Linear(input_size, hidden_size)
|
183 |
-
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
184 |
-
self.fc3 = nn.Linear(hidden_size, output_size)
|
185 |
-
self.relu = nn.ReLU()
|
186 |
-
|
187 |
-
def forward(self, x):
|
188 |
-
x = self.relu(self.fc1(x))
|
189 |
-
x = self.relu(self.fc2(x))
|
190 |
-
x = self.fc3(x)
|
191 |
-
return x
|
192 |
-
|
193 |
-
# Function to create random frequencies to mask IP data
|
194 |
-
def generate_frequencies(ip, model, iterations=100):
|
195 |
-
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
|
196 |
-
frequencies = []
|
197 |
-
|
198 |
-
for _ in range(iterations):
|
199 |
-
frequency = model(ip_tensor)
|
200 |
-
frequencies.append(frequency.item())
|
201 |
-
|
202 |
-
return frequencies
|
203 |
-
|
204 |
-
# Function to generate a wealth signal that transmits in the direction of energy
|
205 |
-
def generate_wealth_signal(iterations=100):
|
206 |
-
time = np.linspace(0, 10, iterations)
|
207 |
-
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
|
208 |
-
return wealth_signal
|
209 |
-
|
210 |
-
# Function to generate a dense encryption waveform
|
211 |
-
def generate_encryption_waveform(iterations=100):
|
212 |
-
time = np.linspace(0, 10, iterations)
|
213 |
-
# Dense waveform with higher frequency and random noise for encryption
|
214 |
-
encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations)
|
215 |
-
return encryption_signal
|
216 |
-
|
217 |
-
# Function to visualize frequencies, wealth signal, and encryption
|
218 |
-
def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index):
|
219 |
-
plt.figure(figsize=(10, 4))
|
220 |
-
|
221 |
-
# Plot masked frequencies
|
222 |
-
plt.plot(frequencies, color='b', label="Masked Frequencies")
|
223 |
-
|
224 |
-
# Plot wealth signal
|
225 |
-
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
|
226 |
-
|
227 |
-
# Add encryption signal at target point
|
228 |
-
plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)),
|
229 |
-
encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2)
|
230 |
-
|
231 |
-
plt.title("SecureWealth Transmittor")
|
232 |
-
plt.xlabel("Iterations")
|
233 |
-
plt.ylabel("Amplitude")
|
234 |
-
plt.grid(True)
|
235 |
-
plt.legend()
|
236 |
-
plt.show()
|
237 |
-
|
238 |
-
# Initialize the neural network
|
239 |
-
model = FrequencyMaskingNet()
|
240 |
-
|
241 |
-
# Example IP address to be masked (as a float for simplicity)
|
242 |
-
ip_address = 192.168
|
243 |
-
|
244 |
-
# Generate pseudo-random frequencies to mask the IP
|
245 |
-
masked_frequencies = generate_frequencies(ip_address, model)
|
246 |
-
|
247 |
-
# Generate a wealth signal that grows in the direction of energy
|
248 |
-
wealth_signal = generate_wealth_signal(len(masked_frequencies))
|
249 |
-
|
250 |
-
# Determine where the wealth signal reaches its target (e.g., at its peak)
|
251 |
-
target_reached_index = np.argmax(wealth_signal)
|
252 |
-
|
253 |
-
# Generate dense encryption waveform once the wealth signal reaches its target
|
254 |
-
encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index)
|
255 |
-
|
256 |
-
# Visualize the generated frequencies, wealth signal, and encryption signal
|
257 |
-
plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|