File size: 4,846 Bytes
81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc 81d2cdb 704f2cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
license: other
license_name: mrl
language:
- en
tags:
- chat
pipeline_tag: text-generation
library_name: transformers
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/-UC6YN1Gt3e1FDh8EqyaB.png)
This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.
This model is fine-tuned on top of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407).
## Prompting
A typical input would look like this:
```py
<s>[INST] SYSTEM MESSAGE
USER MESSAGE[/INST] ASSISTANT MESSAGE</s>[INST] USER MESSAGE[/INST]
```
## SillyTavern templates
Below are Instruct and Context templates for use within SillyTavern.
<details><summary>context template</summary>
```yaml
default SillyTavern template works fine
```
</details><br>
<details><summary>instruct template</summary>
```yaml
default SillyTavern template works fine
```
</details><br>
## Axolotl config
<details><summary>See axolotl config</summary>
```yaml
base_model: mistralai/Mistral-Nemo-Instruct-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: anthracite-org/magnum-v4-12b-r2
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
type: custommistralv3tekken
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
type: custommistralv3tekken
- path: anthracite-org/kalo-opus-instruct-3k-filtered-no-system
type: custommistralv3tekken
- path: anthracite-org/nopm_claude_writing_fixed
type: custommistralv3tekken
- path: anthracite-org/kalo_opus_misc_240827_no_system
type: custommistralv3tekken
- path: anthracite-org/kalo_misc_part2_no_system
type: custommistralv3tekken
#chat_template: chatml
shuffle_merged_datasets: true
#default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: /workspace/data/magnum-12b-data
val_set_size: 0.0
output_dir: /workspace/data/12b-fft-out
sequence_len: 32768
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: 12b-magnum-fft
wandb_entity:
wandb_watch:
wandb_name: v4-r2-attempt-01
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
```
</details><br>
## Credits
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.
We would also like to thank all members of Anthracite who made this finetune possible.
## Datasets
- [anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system](https://huggingface.co/datasets/anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system)
- [anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system)
- [anthracite-org/kalo-opus-instruct-3k-filtered-no-system](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-3k-filtered-no-system)
- [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed)
- [anthracite-org/kalo_opus_misc_240827_no_system](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827_no_system)
- [anthracite-org/kalo_misc_part2_no_system](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2_no_system)
## Training
The training was done for 2 epochs. We used 8x[H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Recursal AI](https://recursal.ai/) / [Featherless AI](https://featherless.ai/) for the full-parameter fine-tuning of the model.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Safety
... |