anthonymeo
commited on
Commit
•
0a36bb1
1
Parent(s):
4391220
Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/training_eval_loss-checkpoint.png +0 -0
- .ipynb_checkpoints/training_loss-checkpoint.png +0 -0
- README.md +68 -0
- all_results.json +12 -0
- config.json +38 -0
- configuration_internlm2.py +180 -0
- eval_results.json +7 -0
- generation_config.json +9 -0
- model.safetensors +3 -0
- modeling_internlm2.py +1808 -0
- special_tokens_map.json +38 -0
- tokenization_internlm2.py +236 -0
- tokenization_internlm2_fast.py +214 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +104 -0
- train_results.json +8 -0
- trainer_state.json +432 -0
- training_args.bin +3 -0
- training_eval_loss.png +0 -0
- training_loss.png +0 -0
.ipynb_checkpoints/training_eval_loss-checkpoint.png
ADDED
.ipynb_checkpoints/training_loss-checkpoint.png
ADDED
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: internlm/internlm2_5-1_8b-chat
|
5 |
+
tags:
|
6 |
+
- llama-factory
|
7 |
+
- full
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: predict2
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# predict2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [internlm/internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) on the expanded dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2200
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 4
|
42 |
+
- eval_batch_size: 2
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- gradient_accumulation_steps: 8
|
46 |
+
- total_train_batch_size: 32
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 3.0
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:------:|:----:|:---------------:|
|
56 |
+
| 0.2062 | 0.5984 | 100 | 0.2123 |
|
57 |
+
| 0.1256 | 1.1967 | 200 | 0.2036 |
|
58 |
+
| 0.1296 | 1.7951 | 300 | 0.1937 |
|
59 |
+
| 0.0592 | 2.3934 | 400 | 0.2185 |
|
60 |
+
| 0.0646 | 2.9918 | 500 | 0.2199 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.44.2
|
66 |
+
- Pytorch 2.4.0
|
67 |
+
- Datasets 2.21.0
|
68 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.99775617053104,
|
3 |
+
"eval_loss": 0.21995605528354645,
|
4 |
+
"eval_runtime": 33.1034,
|
5 |
+
"eval_samples_per_second": 17.974,
|
6 |
+
"eval_steps_per_second": 9.002,
|
7 |
+
"total_flos": 9861900926976.0,
|
8 |
+
"train_loss": 0.14637824013353345,
|
9 |
+
"train_runtime": 2877.8871,
|
10 |
+
"train_samples_per_second": 5.575,
|
11 |
+
"train_steps_per_second": 0.174
|
12 |
+
}
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "internlm/internlm2_5-1_8b-chat",
|
3 |
+
"architectures": [
|
4 |
+
"InternLM2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_implementation": "eager",
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_internlm2.InternLM2Config",
|
9 |
+
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
|
10 |
+
"AutoModelForCausalLM": "internlm/internlm2_5-1_8b-chat--modeling_internlm2.InternLM2ForCausalLM",
|
11 |
+
"AutoModelForSequenceClassification": "internlm/internlm2_5-1_8b-chat--modeling_internlm2.InternLM2ForSequenceClassification"
|
12 |
+
},
|
13 |
+
"bias": false,
|
14 |
+
"bos_token_id": 1,
|
15 |
+
"eos_token_id": 2,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 2048,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 8192,
|
20 |
+
"max_position_embeddings": 32768,
|
21 |
+
"model_type": "internlm2",
|
22 |
+
"num_attention_heads": 16,
|
23 |
+
"num_hidden_layers": 24,
|
24 |
+
"num_key_value_heads": 8,
|
25 |
+
"pad_token_id": 2,
|
26 |
+
"pretraining_tp": 1,
|
27 |
+
"rms_norm_eps": 1e-05,
|
28 |
+
"rope_scaling": {
|
29 |
+
"factor": 2.0,
|
30 |
+
"type": "dynamic"
|
31 |
+
},
|
32 |
+
"rope_theta": 1000000,
|
33 |
+
"tie_word_embeddings": false,
|
34 |
+
"torch_dtype": "bfloat16",
|
35 |
+
"transformers_version": "4.44.2",
|
36 |
+
"use_cache": false,
|
37 |
+
"vocab_size": 92544
|
38 |
+
}
|
configuration_internlm2.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" InternLM2 model configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
+
|
26 |
+
|
27 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
28 |
+
class InternLM2Config(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
31 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
32 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
40 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
42 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
43 |
+
Dimension of the hidden representations.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
45 |
+
Dimension of the MLP representations.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
47 |
+
Number of hidden layers in the Transformer decoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
49 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
50 |
+
num_key_value_heads (`int`, *optional*):
|
51 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
53 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
54 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
55 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
56 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
57 |
+
`num_attention_heads`.
|
58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
+
The non-linear activation function (function or string) in the decoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
61 |
+
The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
pad_token_id (`int`, *optional*):
|
70 |
+
Padding token id.
|
71 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
72 |
+
Beginning of stream token id.
|
73 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
74 |
+
End of stream token id.
|
75 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
76 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
77 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
|
78 |
+
to understand more about it. This value is necessary to ensure exact reproducibility
|
79 |
+
of the pretraining results. Please refer to [this
|
80 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`Dict`, *optional*):
|
86 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
87 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
88 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
89 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
90 |
+
these scaling strategies behave:
|
91 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
92 |
+
experimental feature, subject to breaking API changes in future versions.
|
93 |
+
"""
|
94 |
+
_auto_class = "AutoConfig"
|
95 |
+
model_type = "internlm2"
|
96 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
97 |
+
|
98 |
+
def __init__( # pylint: disable=W0102
|
99 |
+
self,
|
100 |
+
vocab_size=103168,
|
101 |
+
hidden_size=4096,
|
102 |
+
intermediate_size=11008,
|
103 |
+
num_hidden_layers=32,
|
104 |
+
num_attention_heads=32,
|
105 |
+
num_key_value_heads=None,
|
106 |
+
hidden_act="silu",
|
107 |
+
max_position_embeddings=2048,
|
108 |
+
initializer_range=0.02,
|
109 |
+
rms_norm_eps=1e-6,
|
110 |
+
use_cache=True,
|
111 |
+
pad_token_id=0,
|
112 |
+
bos_token_id=1,
|
113 |
+
eos_token_id=2,
|
114 |
+
pretraining_tp=1,
|
115 |
+
tie_word_embeddings=False,
|
116 |
+
bias=True,
|
117 |
+
rope_theta=10000,
|
118 |
+
rope_scaling=None,
|
119 |
+
attn_implementation=None,
|
120 |
+
**kwargs,
|
121 |
+
):
|
122 |
+
self.vocab_size = vocab_size
|
123 |
+
self.max_position_embeddings = max_position_embeddings
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.intermediate_size = intermediate_size
|
126 |
+
self.num_hidden_layers = num_hidden_layers
|
127 |
+
self.num_attention_heads = num_attention_heads
|
128 |
+
self.bias = bias
|
129 |
+
|
130 |
+
if num_key_value_heads is None:
|
131 |
+
num_key_value_heads = num_attention_heads
|
132 |
+
self.num_key_value_heads = num_key_value_heads
|
133 |
+
|
134 |
+
self.hidden_act = hidden_act
|
135 |
+
self.initializer_range = initializer_range
|
136 |
+
self.rms_norm_eps = rms_norm_eps
|
137 |
+
self.pretraining_tp = pretraining_tp
|
138 |
+
self.use_cache = use_cache
|
139 |
+
self.rope_theta = rope_theta
|
140 |
+
self.rope_scaling = rope_scaling
|
141 |
+
self._rope_scaling_validation()
|
142 |
+
self.attn_implementation = attn_implementation
|
143 |
+
if self.attn_implementation is None:
|
144 |
+
self.attn_implementation = "eager"
|
145 |
+
|
146 |
+
super().__init__(
|
147 |
+
pad_token_id=pad_token_id,
|
148 |
+
bos_token_id=bos_token_id,
|
149 |
+
eos_token_id=eos_token_id,
|
150 |
+
tie_word_embeddings=tie_word_embeddings,
|
151 |
+
**kwargs,
|
152 |
+
)
|
153 |
+
|
154 |
+
def _rope_scaling_validation(self):
|
155 |
+
"""
|
156 |
+
Validate the `rope_scaling` configuration.
|
157 |
+
"""
|
158 |
+
if self.rope_scaling is None:
|
159 |
+
return
|
160 |
+
|
161 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
162 |
+
raise ValueError(
|
163 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
164 |
+
f"got {self.rope_scaling}"
|
165 |
+
)
|
166 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
167 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
168 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
169 |
+
raise ValueError(
|
170 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
171 |
+
)
|
172 |
+
if (
|
173 |
+
rope_scaling_factor is None
|
174 |
+
or not isinstance(rope_scaling_factor, (float, int))
|
175 |
+
or rope_scaling_factor < 1.0
|
176 |
+
):
|
177 |
+
raise ValueError(
|
178 |
+
f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
|
179 |
+
f"of type {type(rope_scaling_factor)}"
|
180 |
+
)
|
eval_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.99775617053104,
|
3 |
+
"eval_loss": 0.21995605528354645,
|
4 |
+
"eval_runtime": 33.1034,
|
5 |
+
"eval_samples_per_second": 17.974,
|
6 |
+
"eval_steps_per_second": 9.002
|
7 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": [
|
4 |
+
2,
|
5 |
+
92542
|
6 |
+
],
|
7 |
+
"pad_token_id": 2,
|
8 |
+
"transformers_version": "4.44.2"
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883911e8bb0aec0bbb8a1e442669b1a5a308070a86724602ff7a5929034b67bc
|
3 |
+
size 3778239296
|
modeling_internlm2.py
ADDED
@@ -0,0 +1,1808 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch InternLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from einops import rearrange
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
30 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutputWithPast,
|
33 |
+
CausalLMOutputWithPast,
|
34 |
+
QuestionAnsweringModelOutput,
|
35 |
+
SequenceClassifierOutputWithPast,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
40 |
+
from transformers.utils import (
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
is_flash_attn_greater_or_equal_2_10,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
|
48 |
+
try:
|
49 |
+
from transformers.generation.streamers import BaseStreamer
|
50 |
+
except Exception:
|
51 |
+
BaseStreamer = None
|
52 |
+
|
53 |
+
from .configuration_internlm2 import InternLM2Config
|
54 |
+
|
55 |
+
|
56 |
+
try:
|
57 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
58 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
59 |
+
except:
|
60 |
+
pass
|
61 |
+
|
62 |
+
try:
|
63 |
+
support_bf16_triu = torch.__version__ >= "2.1.0"
|
64 |
+
except Exception:
|
65 |
+
support_bf16_triu = False
|
66 |
+
|
67 |
+
logger = logging.get_logger(__name__)
|
68 |
+
|
69 |
+
_CONFIG_FOR_DOC = "InternLM2Config"
|
70 |
+
|
71 |
+
|
72 |
+
def _get_unpad_data(attention_mask):
|
73 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
74 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
75 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
76 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # pylint: disable=E1102
|
77 |
+
return (
|
78 |
+
indices,
|
79 |
+
cu_seqlens,
|
80 |
+
max_seqlen_in_batch,
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
class InternLM2RMSNorm(nn.Module):
|
85 |
+
"""InternLM2RMSNorm is equivalent to T5LayerNorm."""
|
86 |
+
|
87 |
+
def __init__(self, hidden_size, eps=1e-6):
|
88 |
+
super().__init__()
|
89 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
90 |
+
self.variance_epsilon = eps
|
91 |
+
|
92 |
+
def forward(self, hidden_states):
|
93 |
+
input_dtype = hidden_states.dtype
|
94 |
+
hidden_states = hidden_states.to(torch.float32)
|
95 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
96 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
97 |
+
return self.weight * hidden_states.to(input_dtype)
|
98 |
+
|
99 |
+
|
100 |
+
ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
|
101 |
+
|
102 |
+
|
103 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
104 |
+
"""Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains."""
|
105 |
+
|
106 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
107 |
+
super().__init__()
|
108 |
+
self.scaling_factor = scaling_factor
|
109 |
+
self.dim = dim
|
110 |
+
self.max_position_embeddings = max_position_embeddings
|
111 |
+
self.base = base
|
112 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
113 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
114 |
+
# For BC we register cos and sin cached
|
115 |
+
self.max_seq_len_cached = max_position_embeddings
|
116 |
+
|
117 |
+
@torch.no_grad()
|
118 |
+
def forward(self, x, position_ids):
|
119 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
120 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
121 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
122 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
123 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
124 |
+
device_type = x.device.type
|
125 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
126 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
127 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
128 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
129 |
+
cos = emb.cos()
|
130 |
+
sin = emb.sin()
|
131 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
132 |
+
|
133 |
+
|
134 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
135 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
136 |
+
|
137 |
+
def forward(self, x, position_ids):
|
138 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
139 |
+
position_ids = position_ids.float() / self.scaling_factor
|
140 |
+
cos, sin = super().forward(x, position_ids)
|
141 |
+
return cos, sin
|
142 |
+
|
143 |
+
|
144 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
145 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
146 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
147 |
+
|
148 |
+
def forward(self, x, position_ids):
|
149 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
150 |
+
seq_len = torch.max(position_ids) + 1
|
151 |
+
if seq_len > self.max_position_embeddings:
|
152 |
+
base = self.base * (
|
153 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
154 |
+
) ** (self.dim / (self.dim - 2))
|
155 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim))
|
156 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
157 |
+
|
158 |
+
cos, sin = super().forward(x, position_ids)
|
159 |
+
return cos, sin
|
160 |
+
|
161 |
+
|
162 |
+
def rotate_half(x):
|
163 |
+
"""Rotates half the hidden dims of the input."""
|
164 |
+
x1 = x[..., : x.shape[-1] // 2]
|
165 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
166 |
+
return torch.cat((-x2, x1), dim=-1)
|
167 |
+
|
168 |
+
|
169 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
|
170 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
q (`torch.Tensor`): The query tensor.
|
174 |
+
k (`torch.Tensor`): The key tensor.
|
175 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
176 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
177 |
+
position_ids (`torch.Tensor`, *optional*):
|
178 |
+
Deprecated and unused.
|
179 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
180 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
181 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
182 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
183 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
184 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
185 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
186 |
+
Returns:
|
187 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
188 |
+
"""
|
189 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
190 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
191 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
192 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
193 |
+
return q_embed, k_embed
|
194 |
+
|
195 |
+
|
196 |
+
class InternLM2MLP(nn.Module):
|
197 |
+
"""MLP for InternLM2 model."""
|
198 |
+
|
199 |
+
def __init__(self, config):
|
200 |
+
super().__init__()
|
201 |
+
self.config = config
|
202 |
+
self.hidden_size = config.hidden_size
|
203 |
+
self.intermediate_size = config.intermediate_size
|
204 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
205 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
206 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
207 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
211 |
+
|
212 |
+
return down_proj
|
213 |
+
|
214 |
+
|
215 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
216 |
+
"""
|
217 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
218 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
219 |
+
"""
|
220 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
221 |
+
if n_rep == 1:
|
222 |
+
return hidden_states
|
223 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
224 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
225 |
+
|
226 |
+
|
227 |
+
class InternLM2Attention(nn.Module):
|
228 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
229 |
+
|
230 |
+
def __init__(self, config: InternLM2Config, layer_idx: Optional[int] = None):
|
231 |
+
super().__init__()
|
232 |
+
self.config = config
|
233 |
+
self.layer_idx = layer_idx
|
234 |
+
if layer_idx is None:
|
235 |
+
logger.warning_once(
|
236 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
237 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
238 |
+
"when creating this class."
|
239 |
+
)
|
240 |
+
|
241 |
+
self.hidden_size = config.hidden_size
|
242 |
+
self.num_heads = config.num_attention_heads
|
243 |
+
self.head_dim = self.hidden_size // self.num_heads
|
244 |
+
self.num_key_value_heads = config.num_key_value_heads
|
245 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
246 |
+
self.max_position_embeddings = config.max_position_embeddings
|
247 |
+
self.rope_theta = config.rope_theta
|
248 |
+
self.is_causal = True
|
249 |
+
|
250 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
251 |
+
raise ValueError(
|
252 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
253 |
+
f" and `num_heads`: {self.num_heads})."
|
254 |
+
)
|
255 |
+
|
256 |
+
self.wqkv = nn.Linear(
|
257 |
+
self.hidden_size,
|
258 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
259 |
+
bias=config.bias,
|
260 |
+
)
|
261 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
262 |
+
|
263 |
+
self._init_rope()
|
264 |
+
|
265 |
+
def _init_rope(self):
|
266 |
+
if self.config.rope_scaling is None:
|
267 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
268 |
+
self.head_dim,
|
269 |
+
max_position_embeddings=self.max_position_embeddings,
|
270 |
+
base=self.rope_theta,
|
271 |
+
)
|
272 |
+
else:
|
273 |
+
scaling_type = self.config.rope_scaling["type"]
|
274 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
275 |
+
if scaling_type == "linear":
|
276 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
277 |
+
self.head_dim,
|
278 |
+
max_position_embeddings=self.max_position_embeddings,
|
279 |
+
scaling_factor=scaling_factor,
|
280 |
+
base=self.rope_theta,
|
281 |
+
)
|
282 |
+
elif scaling_type == "dynamic":
|
283 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
284 |
+
self.head_dim,
|
285 |
+
max_position_embeddings=self.max_position_embeddings,
|
286 |
+
scaling_factor=scaling_factor,
|
287 |
+
base=self.rope_theta,
|
288 |
+
)
|
289 |
+
else:
|
290 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
291 |
+
|
292 |
+
def forward(
|
293 |
+
self,
|
294 |
+
hidden_states: torch.Tensor,
|
295 |
+
attention_mask: Optional[torch.Tensor] = None,
|
296 |
+
position_ids: Optional[torch.LongTensor] = None,
|
297 |
+
past_key_value: Optional[Cache] = None,
|
298 |
+
output_attentions: bool = False,
|
299 |
+
use_cache: bool = False, # pylint: disable=unused-argument
|
300 |
+
cache_position: Optional[torch.LongTensor] = None,
|
301 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
302 |
+
bsz, q_len, _ = hidden_states.size()
|
303 |
+
|
304 |
+
if self.config.pretraining_tp > 1:
|
305 |
+
# split qkv_states by tp size
|
306 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
307 |
+
qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
|
308 |
+
qkv_states = torch.cat(
|
309 |
+
[F.linear(hidden_states, qkv_slice) for qkv_slice in qkv_slices], dim=-1 # pylint: disable=E1102
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
qkv_states = self.wqkv(hidden_states)
|
313 |
+
|
314 |
+
qkv_states = rearrange(
|
315 |
+
qkv_states,
|
316 |
+
"b q (h gs d) -> b q h gs d",
|
317 |
+
gs=2 + self.num_key_value_groups,
|
318 |
+
d=self.head_dim,
|
319 |
+
)
|
320 |
+
|
321 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
322 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d").transpose(1, 2)
|
323 |
+
key_states = qkv_states[..., -2, :].transpose(1, 2)
|
324 |
+
value_states = qkv_states[..., -1, :].transpose(1, 2)
|
325 |
+
|
326 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
327 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
328 |
+
|
329 |
+
if past_key_value is not None:
|
330 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
331 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
332 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
333 |
+
|
334 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
335 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
336 |
+
|
337 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
338 |
+
|
339 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
340 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
341 |
+
attn_weights = attn_weights + causal_mask
|
342 |
+
|
343 |
+
# upcast attention to fp32
|
344 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
345 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
346 |
+
|
347 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
348 |
+
raise ValueError(
|
349 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
350 |
+
f" {attn_output.size()}"
|
351 |
+
)
|
352 |
+
|
353 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
354 |
+
|
355 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
356 |
+
|
357 |
+
if self.config.pretraining_tp > 1:
|
358 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
359 |
+
o_proj_slices = self.wo.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
360 |
+
attn_output = sum(
|
361 |
+
[
|
362 |
+
F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
|
363 |
+
for i in range(self.config.pretraining_tp)
|
364 |
+
]
|
365 |
+
)
|
366 |
+
else:
|
367 |
+
attn_output = self.wo(attn_output)
|
368 |
+
|
369 |
+
if not output_attentions:
|
370 |
+
attn_weights = None
|
371 |
+
|
372 |
+
return attn_output, attn_weights, past_key_value
|
373 |
+
|
374 |
+
|
375 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
376 |
+
"""
|
377 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
378 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
379 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, *args, **kwargs):
|
383 |
+
super().__init__(*args, **kwargs)
|
384 |
+
|
385 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
386 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement,
|
387 |
+
# that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
|
388 |
+
# Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
389 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
|
390 |
+
# produces a wrong mask (top-left).
|
391 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
392 |
+
|
393 |
+
def forward(
|
394 |
+
self,
|
395 |
+
hidden_states: torch.Tensor,
|
396 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
397 |
+
position_ids: Optional[torch.LongTensor] = None,
|
398 |
+
past_key_value: Optional[Cache] = None,
|
399 |
+
output_attentions: bool = False,
|
400 |
+
use_cache: bool = False,
|
401 |
+
cache_position: Optional[torch.LongTensor] = None,
|
402 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
403 |
+
if isinstance(past_key_value, StaticCache):
|
404 |
+
raise ValueError(
|
405 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
406 |
+
"make sure to use `sdpa` in the mean time, and open an issue at "
|
407 |
+
"https://github.com/huggingface/transformers"
|
408 |
+
)
|
409 |
+
|
410 |
+
output_attentions = False
|
411 |
+
|
412 |
+
bsz, q_len, _ = hidden_states.size()
|
413 |
+
|
414 |
+
qkv_states = self.wqkv(hidden_states)
|
415 |
+
|
416 |
+
qkv_states = rearrange(
|
417 |
+
qkv_states,
|
418 |
+
"b q (h gs d) -> b q h gs d",
|
419 |
+
gs=2 + self.num_key_value_groups,
|
420 |
+
d=self.head_dim,
|
421 |
+
)
|
422 |
+
|
423 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
424 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
425 |
+
key_states = qkv_states[..., -2, :]
|
426 |
+
value_states = qkv_states[..., -1, :]
|
427 |
+
|
428 |
+
query_states = query_states.transpose(1, 2)
|
429 |
+
key_states = key_states.transpose(1, 2)
|
430 |
+
value_states = value_states.transpose(1, 2)
|
431 |
+
|
432 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
433 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
434 |
+
|
435 |
+
if past_key_value is not None:
|
436 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
437 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
438 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
439 |
+
|
440 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
|
441 |
+
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
442 |
+
# to be able to avoid many of these transpose/reshape/view.
|
443 |
+
query_states = query_states.transpose(1, 2)
|
444 |
+
key_states = key_states.transpose(1, 2)
|
445 |
+
value_states = value_states.transpose(1, 2)
|
446 |
+
|
447 |
+
# dropout_rate = self.attention_dropout if self.training else 0.0
|
448 |
+
dropout_rate = 0.0
|
449 |
+
|
450 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
451 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
452 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
453 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
454 |
+
# in fp32. (InternLM2RMSNorm handles it correctly)
|
455 |
+
|
456 |
+
input_dtype = query_states.dtype
|
457 |
+
if input_dtype == torch.float32:
|
458 |
+
if torch.is_autocast_enabled():
|
459 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
460 |
+
# Handle the case where the model is quantized
|
461 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
462 |
+
target_dtype = self.config._pre_quantization_dtype
|
463 |
+
else:
|
464 |
+
target_dtype = self.wqkv.weight.dtype
|
465 |
+
|
466 |
+
logger.warning_once(
|
467 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
468 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
469 |
+
f" {target_dtype}."
|
470 |
+
)
|
471 |
+
|
472 |
+
query_states = query_states.to(target_dtype)
|
473 |
+
key_states = key_states.to(target_dtype)
|
474 |
+
value_states = value_states.to(target_dtype)
|
475 |
+
|
476 |
+
attn_output = self._flash_attention_forward(
|
477 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
478 |
+
)
|
479 |
+
|
480 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
481 |
+
attn_output = self.wo(attn_output)
|
482 |
+
|
483 |
+
if not output_attentions:
|
484 |
+
attn_weights = None
|
485 |
+
|
486 |
+
return attn_output, attn_weights, past_key_value # pylint: disable=E0606
|
487 |
+
|
488 |
+
def _flash_attention_forward(
|
489 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
490 |
+
):
|
491 |
+
"""
|
492 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
493 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
494 |
+
|
495 |
+
Args:
|
496 |
+
query_states (`torch.Tensor`):
|
497 |
+
Input query states to be passed to Flash Attention API
|
498 |
+
key_states (`torch.Tensor`):
|
499 |
+
Input key states to be passed to Flash Attention API
|
500 |
+
value_states (`torch.Tensor`):
|
501 |
+
Input value states to be passed to Flash Attention API
|
502 |
+
attention_mask (`torch.Tensor`):
|
503 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
504 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
505 |
+
dropout (`float`):
|
506 |
+
Attention dropout
|
507 |
+
softmax_scale (`float`, *optional*):
|
508 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
509 |
+
"""
|
510 |
+
if not self._flash_attn_uses_top_left_mask:
|
511 |
+
causal = self.is_causal
|
512 |
+
else:
|
513 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
|
514 |
+
# For details, please see the comment in InternLM2FlashAttention2 __init__.
|
515 |
+
causal = self.is_causal and query_length != 1
|
516 |
+
|
517 |
+
# Contains at least one padding token in the sequence
|
518 |
+
if attention_mask is not None:
|
519 |
+
batch_size = query_states.shape[0]
|
520 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
521 |
+
query_states, key_states, value_states, attention_mask, query_length
|
522 |
+
)
|
523 |
+
|
524 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
525 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
526 |
+
|
527 |
+
attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
|
528 |
+
query_states,
|
529 |
+
key_states,
|
530 |
+
value_states,
|
531 |
+
cu_seqlens_q=cu_seqlens_q,
|
532 |
+
cu_seqlens_k=cu_seqlens_k,
|
533 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
534 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
535 |
+
dropout_p=dropout,
|
536 |
+
softmax_scale=softmax_scale,
|
537 |
+
causal=causal,
|
538 |
+
)
|
539 |
+
|
540 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) # pylint: disable=E0606
|
541 |
+
else:
|
542 |
+
attn_output = flash_attn_func( # pylint: disable=E0606
|
543 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
544 |
+
)
|
545 |
+
|
546 |
+
return attn_output
|
547 |
+
|
548 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
549 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
550 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
551 |
+
|
552 |
+
key_layer = index_first_axis( # pylint: disable=E0606
|
553 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
554 |
+
)
|
555 |
+
value_layer = index_first_axis( # pylint: disable=E0606
|
556 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
557 |
+
)
|
558 |
+
if query_length == kv_seq_len:
|
559 |
+
query_layer = index_first_axis( # pylint: disable=E0606
|
560 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
561 |
+
)
|
562 |
+
cu_seqlens_q = cu_seqlens_k
|
563 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
564 |
+
indices_q = indices_k
|
565 |
+
elif query_length == 1:
|
566 |
+
max_seqlen_in_batch_q = 1
|
567 |
+
cu_seqlens_q = torch.arange(
|
568 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
569 |
+
) # There is a memcpy here, that is very bad.
|
570 |
+
indices_q = cu_seqlens_q[:-1]
|
571 |
+
query_layer = query_layer.squeeze(1)
|
572 |
+
else:
|
573 |
+
# The -q_len: slice assumes left padding.
|
574 |
+
attention_mask = attention_mask[:, -query_length:]
|
575 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
|
576 |
+
query_layer, attention_mask
|
577 |
+
)
|
578 |
+
|
579 |
+
return (
|
580 |
+
query_layer,
|
581 |
+
key_layer,
|
582 |
+
value_layer,
|
583 |
+
indices_q,
|
584 |
+
(cu_seqlens_q, cu_seqlens_k),
|
585 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
586 |
+
)
|
587 |
+
|
588 |
+
|
589 |
+
# Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
|
590 |
+
class InternLM2SdpaAttention(InternLM2Attention):
|
591 |
+
"""
|
592 |
+
InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
593 |
+
`InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
|
594 |
+
to adapt to SDPA API.
|
595 |
+
"""
|
596 |
+
|
597 |
+
# Adapted from InternLM2Attention.forward
|
598 |
+
def forward(
|
599 |
+
self,
|
600 |
+
hidden_states: torch.Tensor,
|
601 |
+
attention_mask: Optional[torch.Tensor] = None,
|
602 |
+
position_ids: Optional[torch.LongTensor] = None,
|
603 |
+
past_key_value: Optional[Cache] = None,
|
604 |
+
output_attentions: bool = False,
|
605 |
+
use_cache: bool = False,
|
606 |
+
cache_position: Optional[torch.LongTensor] = None,
|
607 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
608 |
+
if output_attentions:
|
609 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
|
610 |
+
# once this is implemented.
|
611 |
+
logger.warning_once(
|
612 |
+
"InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` "
|
613 |
+
"does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
614 |
+
"but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
|
615 |
+
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
616 |
+
)
|
617 |
+
return super().forward(
|
618 |
+
hidden_states=hidden_states,
|
619 |
+
attention_mask=attention_mask,
|
620 |
+
position_ids=position_ids,
|
621 |
+
past_key_value=past_key_value,
|
622 |
+
output_attentions=output_attentions,
|
623 |
+
use_cache=use_cache,
|
624 |
+
cache_position=cache_position,
|
625 |
+
)
|
626 |
+
|
627 |
+
bsz, q_len, _ = hidden_states.size()
|
628 |
+
|
629 |
+
qkv_states = self.wqkv(hidden_states)
|
630 |
+
|
631 |
+
qkv_states = rearrange(
|
632 |
+
qkv_states,
|
633 |
+
"b q (h gs d) -> b q h gs d",
|
634 |
+
gs=2 + self.num_key_value_groups,
|
635 |
+
d=self.head_dim,
|
636 |
+
)
|
637 |
+
|
638 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
639 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
640 |
+
key_states = qkv_states[..., -2, :]
|
641 |
+
value_states = qkv_states[..., -1, :]
|
642 |
+
|
643 |
+
query_states = query_states.transpose(1, 2)
|
644 |
+
key_states = key_states.transpose(1, 2)
|
645 |
+
value_states = value_states.transpose(1, 2)
|
646 |
+
|
647 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
648 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
649 |
+
|
650 |
+
if past_key_value is not None:
|
651 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
652 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
653 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
654 |
+
|
655 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
656 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
657 |
+
|
658 |
+
causal_mask = attention_mask
|
659 |
+
if attention_mask is not None:
|
660 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
661 |
+
|
662 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
|
663 |
+
# custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
|
664 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
665 |
+
query_states = query_states.contiguous()
|
666 |
+
key_states = key_states.contiguous()
|
667 |
+
value_states = value_states.contiguous()
|
668 |
+
|
669 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
|
670 |
+
# an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
|
671 |
+
# options. An inline conditional prevents dynamic shapes from compiling.
|
672 |
+
is_causal = bool(causal_mask is None and q_len > 1)
|
673 |
+
|
674 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
|
675 |
+
query_states,
|
676 |
+
key_states,
|
677 |
+
value_states,
|
678 |
+
attn_mask=causal_mask,
|
679 |
+
dropout_p=0.0,
|
680 |
+
is_causal=is_causal,
|
681 |
+
)
|
682 |
+
|
683 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
684 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
685 |
+
|
686 |
+
attn_output = self.wo(attn_output)
|
687 |
+
|
688 |
+
return attn_output, None, past_key_value
|
689 |
+
|
690 |
+
|
691 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
692 |
+
"eager": InternLM2Attention,
|
693 |
+
"flash_attention_2": InternLM2FlashAttention2,
|
694 |
+
"sdpa": InternLM2SdpaAttention,
|
695 |
+
}
|
696 |
+
|
697 |
+
|
698 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
|
699 |
+
class InternLM2DecoderLayer(nn.Module):
|
700 |
+
"""InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model."""
|
701 |
+
|
702 |
+
def __init__(self, config: InternLM2Config, layer_idx: int):
|
703 |
+
super().__init__()
|
704 |
+
self.hidden_size = config.hidden_size
|
705 |
+
self.layer_idx = layer_idx
|
706 |
+
|
707 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config, layer_idx=layer_idx)
|
708 |
+
|
709 |
+
self.feed_forward = InternLM2MLP(config)
|
710 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
711 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
712 |
+
|
713 |
+
def forward(
|
714 |
+
self,
|
715 |
+
hidden_states: torch.Tensor,
|
716 |
+
attention_mask: Optional[torch.Tensor] = None,
|
717 |
+
position_ids: Optional[torch.LongTensor] = None,
|
718 |
+
past_key_value: Optional[Cache] = None,
|
719 |
+
output_attentions: Optional[bool] = False,
|
720 |
+
use_cache: Optional[bool] = False,
|
721 |
+
cache_position: Optional[torch.LongTensor] = None,
|
722 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
723 |
+
"""
|
724 |
+
Args:
|
725 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
726 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
727 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
728 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
729 |
+
output_attentions (`bool`, *optional*):
|
730 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
731 |
+
returned tensors for more detail.
|
732 |
+
use_cache (`bool`, *optional*):
|
733 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
734 |
+
(see `past_key_values`).
|
735 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
736 |
+
"""
|
737 |
+
residual = hidden_states
|
738 |
+
|
739 |
+
hidden_states = self.attention_norm(hidden_states)
|
740 |
+
|
741 |
+
# Self Attention
|
742 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
743 |
+
hidden_states=hidden_states,
|
744 |
+
attention_mask=attention_mask,
|
745 |
+
position_ids=position_ids,
|
746 |
+
past_key_value=past_key_value,
|
747 |
+
output_attentions=output_attentions,
|
748 |
+
use_cache=use_cache,
|
749 |
+
cache_position=cache_position,
|
750 |
+
)
|
751 |
+
hidden_states = residual + hidden_states
|
752 |
+
|
753 |
+
# Fully Connected
|
754 |
+
residual = hidden_states
|
755 |
+
hidden_states = self.ffn_norm(hidden_states)
|
756 |
+
hidden_states = self.feed_forward(hidden_states)
|
757 |
+
hidden_states = residual + hidden_states
|
758 |
+
|
759 |
+
outputs = (hidden_states,)
|
760 |
+
|
761 |
+
if output_attentions:
|
762 |
+
outputs += (self_attn_weights,)
|
763 |
+
|
764 |
+
if use_cache:
|
765 |
+
outputs += (present_key_value,)
|
766 |
+
|
767 |
+
return outputs
|
768 |
+
|
769 |
+
|
770 |
+
InternLM2_START_DOCSTRING = r"""
|
771 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
772 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
773 |
+
etc.)
|
774 |
+
|
775 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
776 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
777 |
+
and behavior.
|
778 |
+
|
779 |
+
Parameters:
|
780 |
+
config ([`InternLM2Config`]):
|
781 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
782 |
+
load the weights associated with the model, only the configuration. Check out the
|
783 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
784 |
+
"""
|
785 |
+
|
786 |
+
|
787 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
788 |
+
@add_start_docstrings(
|
789 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
790 |
+
InternLM2_START_DOCSTRING,
|
791 |
+
)
|
792 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
793 |
+
"""
|
794 |
+
InternLM2 pretraiend model's base class.
|
795 |
+
"""
|
796 |
+
|
797 |
+
config_class = InternLM2Config
|
798 |
+
base_model_prefix = "model"
|
799 |
+
supports_gradient_checkpointing = True
|
800 |
+
_no_split_modules = ["InternLM2DecoderLayer"]
|
801 |
+
_skip_keys_device_placement = ["past_key_values"]
|
802 |
+
_supports_flash_attn_2 = True
|
803 |
+
_supports_sdpa = True
|
804 |
+
_supports_cache_class = True
|
805 |
+
_supports_quantized_cache = True
|
806 |
+
_supports_static_cache = True
|
807 |
+
|
808 |
+
def _init_weights(self, module):
|
809 |
+
std = self.config.initializer_range
|
810 |
+
if isinstance(module, nn.Linear):
|
811 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
812 |
+
if module.bias is not None:
|
813 |
+
module.bias.data.zero_()
|
814 |
+
elif isinstance(module, nn.Embedding):
|
815 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
816 |
+
if module.padding_idx is not None:
|
817 |
+
module.weight.data[module.padding_idx].zero_()
|
818 |
+
|
819 |
+
|
820 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
821 |
+
Args:
|
822 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
823 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
824 |
+
it.
|
825 |
+
|
826 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
827 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
828 |
+
|
829 |
+
[What are input IDs?](../glossary#input-ids)
|
830 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
831 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
832 |
+
|
833 |
+
- 1 for tokens that are **not masked**,
|
834 |
+
- 0 for tokens that are **masked**.
|
835 |
+
|
836 |
+
[What are attention masks?](../glossary#attention-mask)
|
837 |
+
|
838 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
839 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
840 |
+
|
841 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
842 |
+
`past_key_values`).
|
843 |
+
|
844 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
845 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
846 |
+
information on the default strategy.
|
847 |
+
|
848 |
+
- 1 indicates the head is **not masked**,
|
849 |
+
- 0 indicates the head is **masked**.
|
850 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
851 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
852 |
+
config.n_positions - 1]`.
|
853 |
+
|
854 |
+
[What are position IDs?](../glossary#position-ids)
|
855 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
856 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
857 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
858 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
859 |
+
|
860 |
+
Two formats are allowed:
|
861 |
+
- a [`~cache_utils.Cache`] instance;
|
862 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
863 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
864 |
+
cache format.
|
865 |
+
|
866 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
867 |
+
legacy cache format will be returned.
|
868 |
+
|
869 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
870 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
871 |
+
of shape `(batch_size, sequence_length)`.
|
872 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
873 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
874 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
875 |
+
model's internal embedding lookup matrix.
|
876 |
+
use_cache (`bool`, *optional*):
|
877 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
878 |
+
`past_key_values`).
|
879 |
+
output_attentions (`bool`, *optional*):
|
880 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
881 |
+
tensors for more detail.
|
882 |
+
output_hidden_states (`bool`, *optional*):
|
883 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
884 |
+
more detail.
|
885 |
+
return_dict (`bool`, *optional*):
|
886 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
887 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
888 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
889 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
890 |
+
the complete sequence length.
|
891 |
+
"""
|
892 |
+
|
893 |
+
|
894 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
|
895 |
+
@add_start_docstrings(
|
896 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
897 |
+
InternLM2_START_DOCSTRING,
|
898 |
+
)
|
899 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
900 |
+
"""
|
901 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
902 |
+
|
903 |
+
Args:
|
904 |
+
config: InternLM2Config
|
905 |
+
"""
|
906 |
+
|
907 |
+
_auto_class = "AutoModel"
|
908 |
+
|
909 |
+
def __init__(self, config: InternLM2Config):
|
910 |
+
super().__init__(config)
|
911 |
+
self.padding_idx = config.pad_token_id
|
912 |
+
self.vocab_size = config.vocab_size
|
913 |
+
self.config = config
|
914 |
+
|
915 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
916 |
+
|
917 |
+
self.layers = nn.ModuleList(
|
918 |
+
[InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
919 |
+
)
|
920 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
921 |
+
|
922 |
+
self.gradient_checkpointing = False
|
923 |
+
# Initialize weights and apply final processing
|
924 |
+
self.post_init()
|
925 |
+
|
926 |
+
def get_input_embeddings(self):
|
927 |
+
return self.tok_embeddings
|
928 |
+
|
929 |
+
def set_input_embeddings(self, value):
|
930 |
+
self.tok_embeddings = value
|
931 |
+
|
932 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
933 |
+
def forward(
|
934 |
+
self,
|
935 |
+
input_ids: torch.LongTensor = None,
|
936 |
+
attention_mask: Optional[torch.Tensor] = None,
|
937 |
+
position_ids: Optional[torch.LongTensor] = None,
|
938 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
939 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
940 |
+
use_cache: Optional[bool] = None,
|
941 |
+
output_attentions: Optional[bool] = None,
|
942 |
+
output_hidden_states: Optional[bool] = None,
|
943 |
+
return_dict: Optional[bool] = None,
|
944 |
+
cache_position: Optional[torch.LongTensor] = None,
|
945 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
946 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
947 |
+
output_hidden_states = (
|
948 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
949 |
+
)
|
950 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
951 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
952 |
+
|
953 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
954 |
+
raise ValueError(
|
955 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
956 |
+
)
|
957 |
+
|
958 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
959 |
+
logger.warning_once(
|
960 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
961 |
+
)
|
962 |
+
use_cache = False
|
963 |
+
|
964 |
+
if inputs_embeds is None:
|
965 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
966 |
+
|
967 |
+
return_legacy_cache = False
|
968 |
+
if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
|
969 |
+
return_legacy_cache = True
|
970 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
971 |
+
|
972 |
+
if cache_position is None:
|
973 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
974 |
+
cache_position = torch.arange(
|
975 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
976 |
+
)
|
977 |
+
if position_ids is None:
|
978 |
+
position_ids = cache_position.unsqueeze(0)
|
979 |
+
|
980 |
+
causal_mask = self._update_causal_mask(
|
981 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
982 |
+
)
|
983 |
+
|
984 |
+
# embed positions
|
985 |
+
hidden_states = inputs_embeds
|
986 |
+
|
987 |
+
# decoder layers
|
988 |
+
all_hidden_states = () if output_hidden_states else None
|
989 |
+
all_self_attns = () if output_attentions else None
|
990 |
+
next_decoder_cache = None
|
991 |
+
|
992 |
+
for decoder_layer in self.layers:
|
993 |
+
if output_hidden_states:
|
994 |
+
all_hidden_states += (hidden_states,)
|
995 |
+
|
996 |
+
if self.gradient_checkpointing and self.training:
|
997 |
+
layer_outputs = self._gradient_checkpointing_func(
|
998 |
+
decoder_layer.__call__,
|
999 |
+
hidden_states,
|
1000 |
+
causal_mask,
|
1001 |
+
position_ids,
|
1002 |
+
past_key_values,
|
1003 |
+
output_attentions,
|
1004 |
+
use_cache,
|
1005 |
+
cache_position,
|
1006 |
+
)
|
1007 |
+
else:
|
1008 |
+
layer_outputs = decoder_layer(
|
1009 |
+
hidden_states,
|
1010 |
+
attention_mask=causal_mask,
|
1011 |
+
position_ids=position_ids,
|
1012 |
+
past_key_value=past_key_values,
|
1013 |
+
output_attentions=output_attentions,
|
1014 |
+
use_cache=use_cache,
|
1015 |
+
cache_position=cache_position,
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
hidden_states = layer_outputs[0]
|
1019 |
+
|
1020 |
+
if use_cache:
|
1021 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1022 |
+
|
1023 |
+
if output_attentions:
|
1024 |
+
all_self_attns += (layer_outputs[1],)
|
1025 |
+
|
1026 |
+
hidden_states = self.norm(hidden_states)
|
1027 |
+
|
1028 |
+
# add hidden states from the last decoder layer
|
1029 |
+
if output_hidden_states:
|
1030 |
+
all_hidden_states += (hidden_states,)
|
1031 |
+
|
1032 |
+
next_cache = next_decoder_cache if use_cache else None
|
1033 |
+
if return_legacy_cache:
|
1034 |
+
next_cache = next_cache.to_legacy_cache()
|
1035 |
+
|
1036 |
+
if not return_dict:
|
1037 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1038 |
+
return BaseModelOutputWithPast(
|
1039 |
+
last_hidden_state=hidden_states,
|
1040 |
+
past_key_values=next_cache,
|
1041 |
+
hidden_states=all_hidden_states,
|
1042 |
+
attentions=all_self_attns,
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
def _update_causal_mask(
|
1046 |
+
self,
|
1047 |
+
attention_mask: torch.Tensor,
|
1048 |
+
input_tensor: torch.Tensor,
|
1049 |
+
cache_position: torch.Tensor,
|
1050 |
+
past_key_values: Cache,
|
1051 |
+
output_attentions: bool,
|
1052 |
+
):
|
1053 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
|
1054 |
+
# even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
|
1055 |
+
# each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
|
1056 |
+
# VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
|
1057 |
+
# See more context in https://github.com/huggingface/transformers/pull/29114
|
1058 |
+
|
1059 |
+
if self.config.attn_implementation == "flash_attention_2":
|
1060 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1061 |
+
return attention_mask
|
1062 |
+
return None
|
1063 |
+
|
1064 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1065 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1066 |
+
# to infer the attention mask.
|
1067 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1068 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1069 |
+
|
1070 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1071 |
+
if self.config.attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1072 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1073 |
+
attention_mask,
|
1074 |
+
inputs_embeds=input_tensor,
|
1075 |
+
past_key_values_length=past_seen_tokens,
|
1076 |
+
is_training=self.training,
|
1077 |
+
):
|
1078 |
+
return None
|
1079 |
+
|
1080 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1081 |
+
min_dtype = torch.finfo(dtype).min
|
1082 |
+
sequence_length = input_tensor.shape[1]
|
1083 |
+
if using_static_cache:
|
1084 |
+
target_length = past_key_values.get_max_length()
|
1085 |
+
else:
|
1086 |
+
target_length = (
|
1087 |
+
attention_mask.shape[-1]
|
1088 |
+
if isinstance(attention_mask, torch.Tensor)
|
1089 |
+
else past_seen_tokens + sequence_length + 1
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1093 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
1094 |
+
if attention_mask.max() != 0:
|
1095 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
1096 |
+
causal_mask = attention_mask
|
1097 |
+
else:
|
1098 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1099 |
+
if sequence_length != 1:
|
1100 |
+
if support_bf16_triu or dtype == torch.float32:
|
1101 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1102 |
+
else:
|
1103 |
+
triu_mask = torch.triu(torch.ones(causal_mask.size(), device=device), diagonal=1).bool()
|
1104 |
+
causal_mask.masked_fill_(~triu_mask, 0)
|
1105 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1106 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1107 |
+
if attention_mask is not None:
|
1108 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1109 |
+
mask_length = attention_mask.shape[-1]
|
1110 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1111 |
+
padding_mask = padding_mask == 0
|
1112 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1113 |
+
padding_mask, min_dtype
|
1114 |
+
)
|
1115 |
+
if (
|
1116 |
+
self.config.attn_implementation == "sdpa"
|
1117 |
+
and attention_mask is not None
|
1118 |
+
and attention_mask.device.type == "cuda"
|
1119 |
+
and not output_attentions
|
1120 |
+
):
|
1121 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1122 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1123 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1124 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) # pylint: disable=E1120
|
1125 |
+
|
1126 |
+
return causal_mask
|
1127 |
+
|
1128 |
+
|
1129 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
|
1130 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
1131 |
+
"""Causal language model (CLM) for InternLM2."""
|
1132 |
+
|
1133 |
+
_auto_class = "AutoModelForCausalLM"
|
1134 |
+
_tied_weights_keys = ["output.weight"]
|
1135 |
+
|
1136 |
+
def __init__(self, config):
|
1137 |
+
super().__init__(config)
|
1138 |
+
self.model = InternLM2Model(config)
|
1139 |
+
self.vocab_size = config.vocab_size
|
1140 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1141 |
+
|
1142 |
+
# Initialize weights and apply final processing
|
1143 |
+
self.post_init()
|
1144 |
+
|
1145 |
+
def get_input_embeddings(self):
|
1146 |
+
return self.model.tok_embeddings
|
1147 |
+
|
1148 |
+
def set_input_embeddings(self, value):
|
1149 |
+
self.model.tok_embeddings = value
|
1150 |
+
|
1151 |
+
def get_output_embeddings(self):
|
1152 |
+
return self.output
|
1153 |
+
|
1154 |
+
def set_output_embeddings(self, new_embeddings):
|
1155 |
+
self.output = new_embeddings
|
1156 |
+
|
1157 |
+
def set_decoder(self, decoder):
|
1158 |
+
self.model = decoder
|
1159 |
+
|
1160 |
+
def get_decoder(self):
|
1161 |
+
return self.model
|
1162 |
+
|
1163 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1164 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1165 |
+
def forward(
|
1166 |
+
self,
|
1167 |
+
input_ids: torch.LongTensor = None,
|
1168 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1169 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1170 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1171 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1172 |
+
labels: Optional[torch.LongTensor] = None,
|
1173 |
+
use_cache: Optional[bool] = None,
|
1174 |
+
output_attentions: Optional[bool] = None,
|
1175 |
+
output_hidden_states: Optional[bool] = None,
|
1176 |
+
return_dict: Optional[bool] = None,
|
1177 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1178 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1179 |
+
r"""
|
1180 |
+
Args:
|
1181 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1182 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1183 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1184 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1185 |
+
|
1186 |
+
Returns:
|
1187 |
+
|
1188 |
+
Example:
|
1189 |
+
|
1190 |
+
```python
|
1191 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1192 |
+
|
1193 |
+
>>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
|
1194 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
|
1195 |
+
|
1196 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1197 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1198 |
+
|
1199 |
+
>>> # Generate
|
1200 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1201 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1202 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1203 |
+
```"""
|
1204 |
+
|
1205 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1206 |
+
output_hidden_states = (
|
1207 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1208 |
+
)
|
1209 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1210 |
+
|
1211 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1212 |
+
outputs = self.model(
|
1213 |
+
input_ids=input_ids,
|
1214 |
+
attention_mask=attention_mask,
|
1215 |
+
position_ids=position_ids,
|
1216 |
+
past_key_values=past_key_values,
|
1217 |
+
inputs_embeds=inputs_embeds,
|
1218 |
+
use_cache=use_cache,
|
1219 |
+
output_attentions=output_attentions,
|
1220 |
+
output_hidden_states=output_hidden_states,
|
1221 |
+
return_dict=return_dict,
|
1222 |
+
cache_position=cache_position,
|
1223 |
+
)
|
1224 |
+
|
1225 |
+
hidden_states = outputs[0]
|
1226 |
+
if self.config.pretraining_tp > 1:
|
1227 |
+
output_slices = self.output.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1228 |
+
logits = [
|
1229 |
+
F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
|
1230 |
+
for i in range(self.config.pretraining_tp)
|
1231 |
+
]
|
1232 |
+
logits = torch.cat(logits, dim=-1)
|
1233 |
+
else:
|
1234 |
+
logits = self.output(hidden_states)
|
1235 |
+
logits = logits.float()
|
1236 |
+
|
1237 |
+
loss = None
|
1238 |
+
if labels is not None:
|
1239 |
+
# Shift so that tokens < n predict n
|
1240 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1241 |
+
shift_labels = labels[..., 1:].contiguous()
|
1242 |
+
# Flatten the tokens
|
1243 |
+
loss_fct = CrossEntropyLoss()
|
1244 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1245 |
+
shift_labels = shift_labels.view(-1)
|
1246 |
+
# Enable model parallelism
|
1247 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1248 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1249 |
+
|
1250 |
+
if not return_dict:
|
1251 |
+
output = (logits,) + outputs[1:]
|
1252 |
+
return (loss,) + output if loss is not None else output
|
1253 |
+
|
1254 |
+
return CausalLMOutputWithPast(
|
1255 |
+
loss=loss,
|
1256 |
+
logits=logits,
|
1257 |
+
past_key_values=outputs.past_key_values,
|
1258 |
+
hidden_states=outputs.hidden_states,
|
1259 |
+
attentions=outputs.attentions,
|
1260 |
+
)
|
1261 |
+
|
1262 |
+
def prepare_inputs_for_generation(
|
1263 |
+
self,
|
1264 |
+
input_ids,
|
1265 |
+
past_key_values=None,
|
1266 |
+
attention_mask=None,
|
1267 |
+
inputs_embeds=None,
|
1268 |
+
cache_position=None,
|
1269 |
+
use_cache=True,
|
1270 |
+
**kwargs,
|
1271 |
+
):
|
1272 |
+
past_length = 0
|
1273 |
+
if past_key_values is not None:
|
1274 |
+
if isinstance(past_key_values, Cache):
|
1275 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1276 |
+
max_cache_length = (
|
1277 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1278 |
+
if past_key_values.get_max_length() is not None
|
1279 |
+
else None
|
1280 |
+
)
|
1281 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1282 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1283 |
+
else:
|
1284 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1285 |
+
max_cache_length = None
|
1286 |
+
|
1287 |
+
# Keep only the unprocessed tokens:
|
1288 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1289 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
|
1290 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1291 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1292 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1293 |
+
# input_ids based on the past_length.
|
1294 |
+
elif past_length < input_ids.shape[1]:
|
1295 |
+
input_ids = input_ids[:, past_length:]
|
1296 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1297 |
+
|
1298 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1299 |
+
if (
|
1300 |
+
max_cache_length is not None
|
1301 |
+
and attention_mask is not None
|
1302 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1303 |
+
):
|
1304 |
+
attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
|
1305 |
+
|
1306 |
+
position_ids = kwargs.get("position_ids", None)
|
1307 |
+
if attention_mask is not None and position_ids is None:
|
1308 |
+
# create position_ids on the fly for batch generation
|
1309 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1310 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1311 |
+
if past_key_values:
|
1312 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1313 |
+
|
1314 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1315 |
+
if inputs_embeds is not None and past_key_values is None:
|
1316 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1317 |
+
else:
|
1318 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1319 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
1320 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
1321 |
+
# TODO: use `next_tokens` directly instead.
|
1322 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1323 |
+
|
1324 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1325 |
+
if cache_position is None:
|
1326 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1327 |
+
elif use_cache:
|
1328 |
+
cache_position = cache_position[-input_length:]
|
1329 |
+
|
1330 |
+
model_inputs.update(
|
1331 |
+
{
|
1332 |
+
"position_ids": position_ids,
|
1333 |
+
"cache_position": cache_position,
|
1334 |
+
"past_key_values": past_key_values,
|
1335 |
+
"use_cache": use_cache,
|
1336 |
+
"attention_mask": attention_mask,
|
1337 |
+
}
|
1338 |
+
)
|
1339 |
+
return model_inputs
|
1340 |
+
|
1341 |
+
@staticmethod
|
1342 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1343 |
+
reordered_past = ()
|
1344 |
+
for layer_past in past_key_values:
|
1345 |
+
reordered_past += (
|
1346 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1347 |
+
)
|
1348 |
+
return reordered_past
|
1349 |
+
|
1350 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, meta_instruction=""):
|
1351 |
+
if history is None:
|
1352 |
+
history = []
|
1353 |
+
if tokenizer.add_bos_token:
|
1354 |
+
prompt = ""
|
1355 |
+
else:
|
1356 |
+
prompt = tokenizer.bos_token
|
1357 |
+
if meta_instruction:
|
1358 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1359 |
+
for record in history:
|
1360 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1361 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
1362 |
+
return tokenizer([prompt], return_tensors="pt")
|
1363 |
+
|
1364 |
+
@torch.no_grad()
|
1365 |
+
def chat(
|
1366 |
+
self,
|
1367 |
+
tokenizer,
|
1368 |
+
query: str,
|
1369 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
1370 |
+
streamer: Optional[BaseStreamer] = None,
|
1371 |
+
max_new_tokens: int = 1024,
|
1372 |
+
do_sample: bool = True,
|
1373 |
+
temperature: float = 0.8,
|
1374 |
+
top_p: float = 0.8,
|
1375 |
+
meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
1376 |
+
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
|
1377 |
+
"(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
|
1378 |
+
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such "
|
1379 |
+
"as English and 中文.",
|
1380 |
+
**kwargs,
|
1381 |
+
):
|
1382 |
+
if history is None:
|
1383 |
+
history = []
|
1384 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1385 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1386 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1387 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
|
1388 |
+
outputs = self.generate(
|
1389 |
+
**inputs,
|
1390 |
+
streamer=streamer,
|
1391 |
+
max_new_tokens=max_new_tokens,
|
1392 |
+
do_sample=do_sample,
|
1393 |
+
temperature=temperature,
|
1394 |
+
top_p=top_p,
|
1395 |
+
eos_token_id=eos_token_id,
|
1396 |
+
**kwargs,
|
1397 |
+
)
|
1398 |
+
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
1399 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1400 |
+
response = response.split("<|im_end|>")[0]
|
1401 |
+
history = history + [(query, response)]
|
1402 |
+
return response, history
|
1403 |
+
|
1404 |
+
@torch.no_grad()
|
1405 |
+
def stream_chat(
|
1406 |
+
self,
|
1407 |
+
tokenizer,
|
1408 |
+
query: str,
|
1409 |
+
history: List[Tuple[str, str]] = None,
|
1410 |
+
max_new_tokens: int = 1024,
|
1411 |
+
do_sample: bool = True,
|
1412 |
+
temperature: float = 0.8,
|
1413 |
+
top_p: float = 0.8,
|
1414 |
+
**kwargs,
|
1415 |
+
):
|
1416 |
+
if history is None:
|
1417 |
+
history = []
|
1418 |
+
"""
|
1419 |
+
Return a generator in format: (response, history)
|
1420 |
+
Eg.
|
1421 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1422 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1423 |
+
"""
|
1424 |
+
if BaseStreamer is None:
|
1425 |
+
raise ModuleNotFoundError(
|
1426 |
+
"The version of `transformers` is too low. Please make sure "
|
1427 |
+
"that you have installed `transformers>=4.28.0`."
|
1428 |
+
)
|
1429 |
+
|
1430 |
+
response_queue = queue.Queue(maxsize=20)
|
1431 |
+
|
1432 |
+
class ChatStreamer(BaseStreamer):
|
1433 |
+
"""
|
1434 |
+
Streamer used in generate to print words one by one.
|
1435 |
+
"""
|
1436 |
+
|
1437 |
+
def __init__(self, tokenizer) -> None:
|
1438 |
+
super().__init__()
|
1439 |
+
self.tokenizer = tokenizer
|
1440 |
+
self.queue = response_queue
|
1441 |
+
self.query = query
|
1442 |
+
self.history = history
|
1443 |
+
self.response = ""
|
1444 |
+
self.cache = []
|
1445 |
+
self.received_inputs = False
|
1446 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1447 |
+
|
1448 |
+
def put(self, value):
|
1449 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1450 |
+
raise ValueError("ChatStreamer only supports batch size 1")
|
1451 |
+
elif len(value.shape) > 1:
|
1452 |
+
value = value[0]
|
1453 |
+
|
1454 |
+
if not self.received_inputs:
|
1455 |
+
# The first received value is input_ids, ignore here
|
1456 |
+
self.received_inputs = True
|
1457 |
+
return
|
1458 |
+
|
1459 |
+
self.cache.extend(value.tolist())
|
1460 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1461 |
+
if token.strip() != "<|im_end|>":
|
1462 |
+
self.response = self.response + token
|
1463 |
+
history = self.history + [(self.query, self.response)]
|
1464 |
+
self.queue.put((self.response, history))
|
1465 |
+
self.cache = []
|
1466 |
+
else:
|
1467 |
+
self.end()
|
1468 |
+
|
1469 |
+
def end(self):
|
1470 |
+
self.queue.put(None)
|
1471 |
+
|
1472 |
+
def stream_producer():
|
1473 |
+
return self.chat(
|
1474 |
+
tokenizer=tokenizer,
|
1475 |
+
query=query,
|
1476 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1477 |
+
history=history,
|
1478 |
+
max_new_tokens=max_new_tokens,
|
1479 |
+
do_sample=do_sample,
|
1480 |
+
temperature=temperature,
|
1481 |
+
top_p=top_p,
|
1482 |
+
**kwargs,
|
1483 |
+
)
|
1484 |
+
|
1485 |
+
def consumer():
|
1486 |
+
producer = threading.Thread(target=stream_producer)
|
1487 |
+
producer.start()
|
1488 |
+
while True:
|
1489 |
+
res = response_queue.get()
|
1490 |
+
if res is None:
|
1491 |
+
return
|
1492 |
+
yield res
|
1493 |
+
|
1494 |
+
return consumer()
|
1495 |
+
|
1496 |
+
|
1497 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
1498 |
+
@add_start_docstrings(
|
1499 |
+
"""
|
1500 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
1501 |
+
|
1502 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1503 |
+
(e.g. GPT-2) do.
|
1504 |
+
|
1505 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1506 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1507 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1508 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1509 |
+
each row of the batch).
|
1510 |
+
""",
|
1511 |
+
InternLM2_START_DOCSTRING,
|
1512 |
+
)
|
1513 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
1514 |
+
"""Sequence Classification Head for InternLM2 Model."""
|
1515 |
+
|
1516 |
+
def __init__(self, config):
|
1517 |
+
super().__init__(config)
|
1518 |
+
self.num_labels = config.num_labels
|
1519 |
+
self.model = InternLM2Model(config)
|
1520 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1521 |
+
|
1522 |
+
# Initialize weights and apply final processing
|
1523 |
+
self.post_init()
|
1524 |
+
|
1525 |
+
def get_input_embeddings(self):
|
1526 |
+
return self.model.tok_embeddings
|
1527 |
+
|
1528 |
+
def set_input_embeddings(self, value):
|
1529 |
+
self.model.tok_embeddings = value
|
1530 |
+
|
1531 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1532 |
+
def forward(
|
1533 |
+
self,
|
1534 |
+
input_ids: torch.LongTensor = None,
|
1535 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1536 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1537 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1538 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1539 |
+
labels: Optional[torch.LongTensor] = None,
|
1540 |
+
use_cache: Optional[bool] = None,
|
1541 |
+
output_attentions: Optional[bool] = None,
|
1542 |
+
output_hidden_states: Optional[bool] = None,
|
1543 |
+
return_dict: Optional[bool] = None,
|
1544 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1545 |
+
r"""
|
1546 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1547 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1548 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1549 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1550 |
+
"""
|
1551 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1552 |
+
|
1553 |
+
transformer_outputs = self.model(
|
1554 |
+
input_ids,
|
1555 |
+
attention_mask=attention_mask,
|
1556 |
+
position_ids=position_ids,
|
1557 |
+
past_key_values=past_key_values,
|
1558 |
+
inputs_embeds=inputs_embeds,
|
1559 |
+
use_cache=use_cache,
|
1560 |
+
output_attentions=output_attentions,
|
1561 |
+
output_hidden_states=output_hidden_states,
|
1562 |
+
return_dict=return_dict,
|
1563 |
+
)
|
1564 |
+
hidden_states = transformer_outputs[0]
|
1565 |
+
logits = self.score(hidden_states)
|
1566 |
+
|
1567 |
+
if input_ids is not None:
|
1568 |
+
batch_size = input_ids.shape[0]
|
1569 |
+
else:
|
1570 |
+
batch_size = inputs_embeds.shape[0]
|
1571 |
+
|
1572 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1573 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1574 |
+
if self.config.pad_token_id is None:
|
1575 |
+
sequence_lengths = -1
|
1576 |
+
else:
|
1577 |
+
if input_ids is not None:
|
1578 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1579 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1580 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1581 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1582 |
+
else:
|
1583 |
+
sequence_lengths = -1
|
1584 |
+
|
1585 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1586 |
+
|
1587 |
+
loss = None
|
1588 |
+
if labels is not None:
|
1589 |
+
labels = labels.to(logits.device)
|
1590 |
+
if self.config.problem_type is None:
|
1591 |
+
if self.num_labels == 1:
|
1592 |
+
self.config.problem_type = "regression"
|
1593 |
+
elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
|
1594 |
+
self.config.problem_type = "single_label_classification"
|
1595 |
+
else:
|
1596 |
+
self.config.problem_type = "multi_label_classification"
|
1597 |
+
|
1598 |
+
if self.config.problem_type == "regression":
|
1599 |
+
loss_fct = MSELoss()
|
1600 |
+
if self.num_labels == 1:
|
1601 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1602 |
+
else:
|
1603 |
+
loss = loss_fct(pooled_logits, labels)
|
1604 |
+
elif self.config.problem_type == "single_label_classification":
|
1605 |
+
loss_fct = CrossEntropyLoss()
|
1606 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1607 |
+
elif self.config.problem_type == "multi_label_classification":
|
1608 |
+
loss_fct = BCEWithLogitsLoss()
|
1609 |
+
loss = loss_fct(pooled_logits, labels)
|
1610 |
+
if not return_dict:
|
1611 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1612 |
+
return ((loss,) + output) if loss is not None else output
|
1613 |
+
|
1614 |
+
return SequenceClassifierOutputWithPast(
|
1615 |
+
loss=loss,
|
1616 |
+
logits=pooled_logits,
|
1617 |
+
past_key_values=transformer_outputs.past_key_values,
|
1618 |
+
hidden_states=transformer_outputs.hidden_states,
|
1619 |
+
attentions=transformer_outputs.attentions,
|
1620 |
+
)
|
1621 |
+
|
1622 |
+
|
1623 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
|
1624 |
+
@add_start_docstrings(
|
1625 |
+
"""
|
1626 |
+
The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
|
1627 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1628 |
+
""",
|
1629 |
+
InternLM2_START_DOCSTRING,
|
1630 |
+
)
|
1631 |
+
class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
|
1632 |
+
"""Question Answering model for InternLM2."""
|
1633 |
+
|
1634 |
+
base_model_prefix = "transformer"
|
1635 |
+
|
1636 |
+
def __init__(self, config):
|
1637 |
+
super().__init__(config)
|
1638 |
+
self.transformer = InternLM2Model(config)
|
1639 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1640 |
+
|
1641 |
+
# Initialize weights and apply final processing
|
1642 |
+
self.post_init()
|
1643 |
+
|
1644 |
+
def get_input_embeddings(self):
|
1645 |
+
return self.transformer.tok_embeddings
|
1646 |
+
|
1647 |
+
def set_input_embeddings(self, value):
|
1648 |
+
self.transformer.tok_embeddings = value
|
1649 |
+
|
1650 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1651 |
+
def forward(
|
1652 |
+
self,
|
1653 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1654 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1655 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1656 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1657 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1658 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1659 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1660 |
+
output_attentions: Optional[bool] = None,
|
1661 |
+
output_hidden_states: Optional[bool] = None,
|
1662 |
+
return_dict: Optional[bool] = None,
|
1663 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1664 |
+
r"""
|
1665 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1666 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1667 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1668 |
+
are not taken into account for computing the loss.
|
1669 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1670 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1671 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1672 |
+
are not taken into account for computing the loss.
|
1673 |
+
"""
|
1674 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1675 |
+
|
1676 |
+
outputs = self.transformer(
|
1677 |
+
input_ids,
|
1678 |
+
attention_mask=attention_mask,
|
1679 |
+
position_ids=position_ids,
|
1680 |
+
past_key_values=past_key_values,
|
1681 |
+
inputs_embeds=inputs_embeds,
|
1682 |
+
output_attentions=output_attentions,
|
1683 |
+
output_hidden_states=output_hidden_states,
|
1684 |
+
return_dict=return_dict,
|
1685 |
+
)
|
1686 |
+
|
1687 |
+
sequence_output = outputs[0]
|
1688 |
+
|
1689 |
+
logits = self.qa_outputs(sequence_output)
|
1690 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1691 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1692 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1693 |
+
|
1694 |
+
total_loss = None
|
1695 |
+
if start_positions is not None and end_positions is not None:
|
1696 |
+
# If we are on multi-GPU, split add a dimension
|
1697 |
+
if len(start_positions.size()) > 1:
|
1698 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1699 |
+
if len(end_positions.size()) > 1:
|
1700 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1701 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1702 |
+
ignored_index = start_logits.size(1)
|
1703 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1704 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1705 |
+
|
1706 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1707 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1708 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1709 |
+
total_loss = (start_loss + end_loss) / 2
|
1710 |
+
|
1711 |
+
if not return_dict:
|
1712 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1713 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1714 |
+
|
1715 |
+
return QuestionAnsweringModelOutput(
|
1716 |
+
loss=total_loss,
|
1717 |
+
start_logits=start_logits,
|
1718 |
+
end_logits=end_logits,
|
1719 |
+
hidden_states=outputs.hidden_states,
|
1720 |
+
attentions=outputs.attentions,
|
1721 |
+
)
|
1722 |
+
|
1723 |
+
|
1724 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
|
1725 |
+
@add_start_docstrings(
|
1726 |
+
"""
|
1727 |
+
The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1728 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1729 |
+
""",
|
1730 |
+
InternLM2_START_DOCSTRING,
|
1731 |
+
)
|
1732 |
+
class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
|
1733 |
+
"""Token classification model for InternLM2."""
|
1734 |
+
|
1735 |
+
def __init__(self, config):
|
1736 |
+
super().__init__(config)
|
1737 |
+
self.num_labels = config.num_labels
|
1738 |
+
self.model = InternLM2Model(config)
|
1739 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1740 |
+
classifier_dropout = config.classifier_dropout
|
1741 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1742 |
+
classifier_dropout = config.hidden_dropout
|
1743 |
+
else:
|
1744 |
+
classifier_dropout = 0.1
|
1745 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1746 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1747 |
+
|
1748 |
+
# Initialize weights and apply final processing
|
1749 |
+
self.post_init()
|
1750 |
+
|
1751 |
+
def get_input_embeddings(self):
|
1752 |
+
return self.model.tok_embeddings
|
1753 |
+
|
1754 |
+
def set_input_embeddings(self, value):
|
1755 |
+
self.model.tok_embeddings = value
|
1756 |
+
|
1757 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1758 |
+
def forward(
|
1759 |
+
self,
|
1760 |
+
input_ids: torch.LongTensor = None,
|
1761 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1762 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1763 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1764 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1765 |
+
labels: Optional[torch.LongTensor] = None,
|
1766 |
+
use_cache: Optional[bool] = None,
|
1767 |
+
output_attentions: Optional[bool] = None,
|
1768 |
+
output_hidden_states: Optional[bool] = None,
|
1769 |
+
return_dict: Optional[bool] = None,
|
1770 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1771 |
+
r"""
|
1772 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1773 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1774 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1775 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1776 |
+
"""
|
1777 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1778 |
+
|
1779 |
+
outputs = self.model(
|
1780 |
+
input_ids,
|
1781 |
+
attention_mask=attention_mask,
|
1782 |
+
position_ids=position_ids,
|
1783 |
+
past_key_values=past_key_values,
|
1784 |
+
inputs_embeds=inputs_embeds,
|
1785 |
+
use_cache=use_cache,
|
1786 |
+
output_attentions=output_attentions,
|
1787 |
+
output_hidden_states=output_hidden_states,
|
1788 |
+
return_dict=return_dict,
|
1789 |
+
)
|
1790 |
+
sequence_output = outputs[0]
|
1791 |
+
sequence_output = self.dropout(sequence_output)
|
1792 |
+
logits = self.score(sequence_output)
|
1793 |
+
|
1794 |
+
loss = None
|
1795 |
+
if labels is not None:
|
1796 |
+
loss_fct = CrossEntropyLoss()
|
1797 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1798 |
+
|
1799 |
+
if not return_dict:
|
1800 |
+
output = (logits,) + outputs[2:]
|
1801 |
+
return ((loss,) + output) if loss is not None else output
|
1802 |
+
|
1803 |
+
return TokenClassifierOutput(
|
1804 |
+
loss=loss,
|
1805 |
+
logits=logits,
|
1806 |
+
hidden_states=outputs.hidden_states,
|
1807 |
+
attentions=outputs.attentions,
|
1808 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>"
|
9 |
+
],
|
10 |
+
"bos_token": {
|
11 |
+
"content": "<s>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"eos_token": {
|
18 |
+
"content": "</s>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "</s>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"unk_token": {
|
32 |
+
"content": "<unk>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
}
|
38 |
+
}
|
tokenization_internlm2.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization classes for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
32 |
+
|
33 |
+
|
34 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
35 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
36 |
+
"""
|
37 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
Path to the vocabulary file.
|
42 |
+
"""
|
43 |
+
|
44 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
45 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
46 |
+
model_input_names = ["input_ids", "attention_mask"]
|
47 |
+
_auto_class = "AutoTokenizer"
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vocab_file,
|
52 |
+
unk_token="<unk>",
|
53 |
+
bos_token="<s>",
|
54 |
+
eos_token="</s>",
|
55 |
+
pad_token="</s>",
|
56 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
57 |
+
add_bos_token=True,
|
58 |
+
add_eos_token=False,
|
59 |
+
decode_with_prefix_space=False,
|
60 |
+
clean_up_tokenization_spaces=False,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
64 |
+
self.vocab_file = vocab_file
|
65 |
+
self.add_bos_token = add_bos_token
|
66 |
+
self.add_eos_token = add_eos_token
|
67 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
68 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
69 |
+
self.sp_model.Load(vocab_file)
|
70 |
+
self._no_prefix_space_tokens = None
|
71 |
+
super().__init__(
|
72 |
+
bos_token=bos_token,
|
73 |
+
eos_token=eos_token,
|
74 |
+
unk_token=unk_token,
|
75 |
+
pad_token=pad_token,
|
76 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
77 |
+
**kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def no_prefix_space_tokens(self):
|
82 |
+
if self._no_prefix_space_tokens is None:
|
83 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
84 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
85 |
+
return self._no_prefix_space_tokens
|
86 |
+
|
87 |
+
@property
|
88 |
+
def vocab_size(self):
|
89 |
+
"""Returns vocab size"""
|
90 |
+
return self.sp_model.get_piece_size()
|
91 |
+
|
92 |
+
@property
|
93 |
+
def bos_token_id(self) -> Optional[int]:
|
94 |
+
return self.sp_model.bos_id()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def eos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.eos_id()
|
99 |
+
|
100 |
+
def get_vocab(self):
|
101 |
+
"""Returns vocab as a dict"""
|
102 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
103 |
+
vocab.update(self.added_tokens_encoder)
|
104 |
+
return vocab
|
105 |
+
|
106 |
+
def _tokenize(self, text):
|
107 |
+
"""Returns a tokenized string."""
|
108 |
+
return self.sp_model.encode(text, out_type=str)
|
109 |
+
|
110 |
+
def _convert_token_to_id(self, token):
|
111 |
+
"""Converts a token (str) in an id using the vocab."""
|
112 |
+
return self.sp_model.piece_to_id(token)
|
113 |
+
|
114 |
+
def _convert_id_to_token(self, index):
|
115 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
116 |
+
token = self.sp_model.IdToPiece(index)
|
117 |
+
return token
|
118 |
+
|
119 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
120 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
121 |
+
return " " + decoded
|
122 |
+
else:
|
123 |
+
return decoded
|
124 |
+
|
125 |
+
def convert_tokens_to_string(self, tokens):
|
126 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
127 |
+
current_sub_tokens = []
|
128 |
+
out_string = ""
|
129 |
+
prev_is_special = False
|
130 |
+
for token in tokens:
|
131 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
132 |
+
if token in self.all_special_tokens:
|
133 |
+
if not prev_is_special:
|
134 |
+
out_string += " "
|
135 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
136 |
+
prev_is_special = True
|
137 |
+
current_sub_tokens = []
|
138 |
+
else:
|
139 |
+
current_sub_tokens.append(token)
|
140 |
+
prev_is_special = False
|
141 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
142 |
+
out_string = self.clean_up_tokenization(out_string)
|
143 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
144 |
+
return out_string[1:]
|
145 |
+
|
146 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
147 |
+
"""
|
148 |
+
Save the vocabulary and special tokens file to a directory.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
save_directory (`str`):
|
152 |
+
The directory in which to save the vocabulary.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`Tuple(str)`: Paths to the files saved.
|
156 |
+
"""
|
157 |
+
if not os.path.isdir(save_directory):
|
158 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
159 |
+
return
|
160 |
+
out_vocab_file = os.path.join(
|
161 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
162 |
+
)
|
163 |
+
|
164 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
165 |
+
copyfile(self.vocab_file, out_vocab_file)
|
166 |
+
elif not os.path.isfile(self.vocab_file):
|
167 |
+
with open(out_vocab_file, "wb") as fi:
|
168 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
169 |
+
fi.write(content_spiece_model)
|
170 |
+
|
171 |
+
return (out_vocab_file,)
|
172 |
+
|
173 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
174 |
+
if self.add_bos_token:
|
175 |
+
bos_token_ids = [self.bos_token_id]
|
176 |
+
else:
|
177 |
+
bos_token_ids = []
|
178 |
+
|
179 |
+
output = bos_token_ids + token_ids_0
|
180 |
+
|
181 |
+
if token_ids_1 is not None:
|
182 |
+
output = output + token_ids_1
|
183 |
+
|
184 |
+
if self.add_eos_token:
|
185 |
+
output = output + [self.eos_token_id]
|
186 |
+
|
187 |
+
return output
|
188 |
+
|
189 |
+
def get_special_tokens_mask(
|
190 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
191 |
+
) -> List[int]:
|
192 |
+
"""
|
193 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
194 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
token_ids_0 (`List[int]`):
|
198 |
+
List of IDs.
|
199 |
+
token_ids_1 (`List[int]`, *optional*):
|
200 |
+
Optional second list of IDs for sequence pairs.
|
201 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
202 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
206 |
+
"""
|
207 |
+
if already_has_special_tokens:
|
208 |
+
return super().get_special_tokens_mask(
|
209 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
210 |
+
)
|
211 |
+
|
212 |
+
if token_ids_1 is None:
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
214 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
215 |
+
|
216 |
+
def create_token_type_ids_from_sequences(
|
217 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
218 |
+
) -> List[int]:
|
219 |
+
"""
|
220 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
221 |
+
use of token type ids, therefore a list of zeros is returned.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
token_ids_0 (`List[int]`):
|
225 |
+
List of IDs.
|
226 |
+
token_ids_1 (`List[int]`, *optional*):
|
227 |
+
Optional second list of IDs for sequence pairs.
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
`List[int]`: List of zeros.
|
231 |
+
"""
|
232 |
+
eos = [self.eos_token_id]
|
233 |
+
|
234 |
+
if token_ids_1 is None:
|
235 |
+
return len(token_ids_0 + eos) * [0]
|
236 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenization_internlm2_fast.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization Fast class for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, Optional, Tuple
|
22 |
+
|
23 |
+
from tokenizers import processors, decoders, Tokenizer, normalizers
|
24 |
+
from tokenizers.models import BPE
|
25 |
+
|
26 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
from transformers.convert_slow_tokenizer import (
|
30 |
+
SLOW_TO_FAST_CONVERTERS,
|
31 |
+
SpmConverter,
|
32 |
+
SentencePieceExtractor,
|
33 |
+
)
|
34 |
+
|
35 |
+
from .tokenization_internlm2 import InternLM2Tokenizer
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
40 |
+
|
41 |
+
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
42 |
+
class InternLM2Converter(SpmConverter):
|
43 |
+
handle_byte_fallback = True
|
44 |
+
|
45 |
+
def vocab(self, proto):
|
46 |
+
vocab = [
|
47 |
+
("<unk>", 0.0),
|
48 |
+
("<s>", 0.0),
|
49 |
+
("</s>", 0.0),
|
50 |
+
]
|
51 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
52 |
+
return vocab
|
53 |
+
|
54 |
+
def unk_id(self, proto):
|
55 |
+
unk_id = 0
|
56 |
+
return unk_id
|
57 |
+
|
58 |
+
def decoder(self, replacement, add_prefix_space):
|
59 |
+
decoders_sequence = [
|
60 |
+
decoders.Replace("▁", " "),
|
61 |
+
decoders.ByteFallback(),
|
62 |
+
decoders.Fuse(),
|
63 |
+
]
|
64 |
+
if self.proto.normalizer_spec.add_dummy_prefix:
|
65 |
+
decoders_sequence.append(decoders.Strip(content=" ", left=1))
|
66 |
+
return decoders.Sequence(decoders_sequence)
|
67 |
+
|
68 |
+
def tokenizer(self, proto):
|
69 |
+
model_type = proto.trainer_spec.model_type
|
70 |
+
vocab_scores = self.vocab(proto)
|
71 |
+
# special tokens
|
72 |
+
added_tokens = self.original_tokenizer.added_tokens_decoder
|
73 |
+
for i in range(len(vocab_scores)):
|
74 |
+
piece, score = vocab_scores[i]
|
75 |
+
if i in added_tokens:
|
76 |
+
vocab_scores[i] = (added_tokens[i].content, score)
|
77 |
+
if model_type == 1:
|
78 |
+
raise RuntimeError("InternLM2 is supposed to be a BPE model!")
|
79 |
+
|
80 |
+
elif model_type == 2:
|
81 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
82 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
83 |
+
tokenizer = Tokenizer(
|
84 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
85 |
+
)
|
86 |
+
tokenizer.add_special_tokens(
|
87 |
+
[ added_token for index, added_token in added_tokens.items()]
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
raise Exception(
|
91 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
92 |
+
)
|
93 |
+
|
94 |
+
return tokenizer
|
95 |
+
|
96 |
+
def normalizer(self, proto):
|
97 |
+
normalizers_list = []
|
98 |
+
if proto.normalizer_spec.add_dummy_prefix:
|
99 |
+
normalizers_list.append(normalizers.Prepend(prepend="▁"))
|
100 |
+
normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
|
101 |
+
return normalizers.Sequence(normalizers_list)
|
102 |
+
|
103 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
104 |
+
return None
|
105 |
+
|
106 |
+
SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
|
107 |
+
|
108 |
+
|
109 |
+
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
110 |
+
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
111 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
112 |
+
slow_tokenizer_class = InternLM2Tokenizer
|
113 |
+
padding_side = "left"
|
114 |
+
model_input_names = ["input_ids", "attention_mask"]
|
115 |
+
_auto_class = "AutoTokenizer"
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_file,
|
120 |
+
unk_token="<unk>",
|
121 |
+
bos_token="<s>",
|
122 |
+
eos_token="</s>",
|
123 |
+
pad_token="</s>",
|
124 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
125 |
+
add_bos_token=True,
|
126 |
+
add_eos_token=False,
|
127 |
+
decode_with_prefix_space=False,
|
128 |
+
clean_up_tokenization_spaces=False,
|
129 |
+
**kwargs,
|
130 |
+
):
|
131 |
+
super().__init__(
|
132 |
+
vocab_file=vocab_file,
|
133 |
+
unk_token=unk_token,
|
134 |
+
bos_token=bos_token,
|
135 |
+
eos_token=eos_token,
|
136 |
+
pad_token=pad_token,
|
137 |
+
sp_model_kwargs=sp_model_kwargs,
|
138 |
+
add_bos_token=add_bos_token,
|
139 |
+
add_eos_token=add_eos_token,
|
140 |
+
decode_with_prefix_space=decode_with_prefix_space,
|
141 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
142 |
+
**kwargs,
|
143 |
+
)
|
144 |
+
self._add_bos_token = add_bos_token
|
145 |
+
self._add_eos_token = add_eos_token
|
146 |
+
self.update_post_processor()
|
147 |
+
self.vocab_file = vocab_file
|
148 |
+
|
149 |
+
@property
|
150 |
+
def can_save_slow_tokenizer(self) -> bool:
|
151 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
152 |
+
|
153 |
+
def update_post_processor(self):
|
154 |
+
"""
|
155 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
156 |
+
"""
|
157 |
+
bos = self.bos_token
|
158 |
+
bos_token_id = self.bos_token_id
|
159 |
+
if bos is None and self.add_bos_token:
|
160 |
+
raise ValueError("add_bos_token = True but bos_token = None")
|
161 |
+
|
162 |
+
eos = self.eos_token
|
163 |
+
eos_token_id = self.eos_token_id
|
164 |
+
if eos is None and self.add_eos_token:
|
165 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
166 |
+
|
167 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
168 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
169 |
+
|
170 |
+
special_tokens = []
|
171 |
+
if self.add_bos_token:
|
172 |
+
special_tokens.append((bos, bos_token_id))
|
173 |
+
if self.add_eos_token:
|
174 |
+
special_tokens.append((eos, eos_token_id))
|
175 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
176 |
+
single=single, pair=pair, special_tokens=special_tokens
|
177 |
+
)
|
178 |
+
|
179 |
+
@property
|
180 |
+
def add_eos_token(self):
|
181 |
+
return self._add_eos_token
|
182 |
+
|
183 |
+
@property
|
184 |
+
def add_bos_token(self):
|
185 |
+
return self._add_bos_token
|
186 |
+
|
187 |
+
@add_eos_token.setter
|
188 |
+
def add_eos_token(self, value):
|
189 |
+
self._add_eos_token = value
|
190 |
+
self.update_post_processor()
|
191 |
+
|
192 |
+
@add_bos_token.setter
|
193 |
+
def add_bos_token(self, value):
|
194 |
+
self._add_bos_token = value
|
195 |
+
self.update_post_processor()
|
196 |
+
|
197 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
198 |
+
if not self.can_save_slow_tokenizer:
|
199 |
+
raise ValueError(
|
200 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
201 |
+
"tokenizer."
|
202 |
+
)
|
203 |
+
|
204 |
+
if not os.path.isdir(save_directory):
|
205 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
206 |
+
return
|
207 |
+
out_vocab_file = os.path.join(
|
208 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
209 |
+
)
|
210 |
+
|
211 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
212 |
+
copyfile(self.vocab_file, out_vocab_file)
|
213 |
+
|
214 |
+
return (out_vocab_file,)
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"92538": {
|
30 |
+
"content": "<|plugin|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"92539": {
|
38 |
+
"content": "<|interpreter|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"92540": {
|
46 |
+
"content": "<|action_end|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"92541": {
|
54 |
+
"content": "<|action_start|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"92542": {
|
62 |
+
"content": "<|im_end|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"92543": {
|
70 |
+
"content": "<|im_start|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"additional_special_tokens": [
|
79 |
+
"<|im_start|>",
|
80 |
+
"<|im_end|>",
|
81 |
+
"<|action_start|>",
|
82 |
+
"<|action_end|>",
|
83 |
+
"<|interpreter|>",
|
84 |
+
"<|plugin|>"
|
85 |
+
],
|
86 |
+
"auto_map": {
|
87 |
+
"AutoTokenizer": [
|
88 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
89 |
+
"tokenization_internlm2_fast.InternLM2TokenizerFast"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"bos_token": "<s>",
|
93 |
+
"chat_template": "{{ '<s>' }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>\n' }}{% endif %}{% endfor %}",
|
94 |
+
"clean_up_tokenization_spaces": false,
|
95 |
+
"decode_with_prefix_space": false,
|
96 |
+
"eos_token": "</s>",
|
97 |
+
"model_max_length": 1000000000000000019884624838656,
|
98 |
+
"pad_token": "</s>",
|
99 |
+
"padding_side": "right",
|
100 |
+
"sp_model_kwargs": null,
|
101 |
+
"split_special_tokens": false,
|
102 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
103 |
+
"unk_token": "<unk>"
|
104 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.99775617053104,
|
3 |
+
"total_flos": 9861900926976.0,
|
4 |
+
"train_loss": 0.14637824013353345,
|
5 |
+
"train_runtime": 2877.8871,
|
6 |
+
"train_samples_per_second": 5.575,
|
7 |
+
"train_steps_per_second": 0.174
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.99775617053104,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 501,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.05983545250560957,
|
13 |
+
"grad_norm": 7.40893212326487,
|
14 |
+
"learning_rate": 1.96078431372549e-06,
|
15 |
+
"loss": 0.6407,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.11967090501121914,
|
20 |
+
"grad_norm": 2.443879636951024,
|
21 |
+
"learning_rate": 3.92156862745098e-06,
|
22 |
+
"loss": 0.3887,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.17950635751682872,
|
27 |
+
"grad_norm": 2.182405695242156,
|
28 |
+
"learning_rate": 5.882352941176471e-06,
|
29 |
+
"loss": 0.2616,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.2393418100224383,
|
34 |
+
"grad_norm": 2.01489573168189,
|
35 |
+
"learning_rate": 7.84313725490196e-06,
|
36 |
+
"loss": 0.2571,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.2991772625280479,
|
41 |
+
"grad_norm": 1.979013183070111,
|
42 |
+
"learning_rate": 9.803921568627451e-06,
|
43 |
+
"loss": 0.2477,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.35901271503365745,
|
48 |
+
"grad_norm": 1.549355728093093,
|
49 |
+
"learning_rate": 9.990133642141359e-06,
|
50 |
+
"loss": 0.2176,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.418848167539267,
|
55 |
+
"grad_norm": 1.4426481204872057,
|
56 |
+
"learning_rate": 9.95607770125771e-06,
|
57 |
+
"loss": 0.2273,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.4786836200448766,
|
62 |
+
"grad_norm": 1.7789832633152836,
|
63 |
+
"learning_rate": 9.89787624799672e-06,
|
64 |
+
"loss": 0.2125,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.5385190725504861,
|
69 |
+
"grad_norm": 1.529318217095282,
|
70 |
+
"learning_rate": 9.815812833988292e-06,
|
71 |
+
"loss": 0.2229,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.5983545250560958,
|
76 |
+
"grad_norm": 1.6259265112226373,
|
77 |
+
"learning_rate": 9.710287263936485e-06,
|
78 |
+
"loss": 0.2062,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.5983545250560958,
|
83 |
+
"eval_loss": 0.2123425155878067,
|
84 |
+
"eval_runtime": 33.4729,
|
85 |
+
"eval_samples_per_second": 17.776,
|
86 |
+
"eval_steps_per_second": 8.903,
|
87 |
+
"step": 100
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.6581899775617053,
|
91 |
+
"grad_norm": 1.6245243576341002,
|
92 |
+
"learning_rate": 9.581813647811199e-06,
|
93 |
+
"loss": 0.2105,
|
94 |
+
"step": 110
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.7180254300673149,
|
98 |
+
"grad_norm": 1.731561075586601,
|
99 |
+
"learning_rate": 9.431017896156074e-06,
|
100 |
+
"loss": 0.2048,
|
101 |
+
"step": 120
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.7778608825729244,
|
105 |
+
"grad_norm": 1.7874480467541498,
|
106 |
+
"learning_rate": 9.25863467071524e-06,
|
107 |
+
"loss": 0.2113,
|
108 |
+
"step": 130
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.837696335078534,
|
112 |
+
"grad_norm": 1.3708463663991368,
|
113 |
+
"learning_rate": 9.065503805235139e-06,
|
114 |
+
"loss": 0.1988,
|
115 |
+
"step": 140
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.8975317875841436,
|
119 |
+
"grad_norm": 1.3567660521800535,
|
120 |
+
"learning_rate": 8.852566213878947e-06,
|
121 |
+
"loss": 0.2038,
|
122 |
+
"step": 150
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.9573672400897532,
|
126 |
+
"grad_norm": 1.8281708498422444,
|
127 |
+
"learning_rate": 8.620859307187339e-06,
|
128 |
+
"loss": 0.2196,
|
129 |
+
"step": 160
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.0172026925953628,
|
133 |
+
"grad_norm": 1.2318054900550177,
|
134 |
+
"learning_rate": 8.371511937918616e-06,
|
135 |
+
"loss": 0.1762,
|
136 |
+
"step": 170
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.0770381451009723,
|
140 |
+
"grad_norm": 1.568321912319435,
|
141 |
+
"learning_rate": 8.105738901391553e-06,
|
142 |
+
"loss": 0.1288,
|
143 |
+
"step": 180
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 1.136873597606582,
|
147 |
+
"grad_norm": 1.3819346363939895,
|
148 |
+
"learning_rate": 7.82483501712469e-06,
|
149 |
+
"loss": 0.1214,
|
150 |
+
"step": 190
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 1.1967090501121915,
|
154 |
+
"grad_norm": 1.2680685647450163,
|
155 |
+
"learning_rate": 7.530168820605819e-06,
|
156 |
+
"loss": 0.1256,
|
157 |
+
"step": 200
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 1.1967090501121915,
|
161 |
+
"eval_loss": 0.20358169078826904,
|
162 |
+
"eval_runtime": 32.7594,
|
163 |
+
"eval_samples_per_second": 18.163,
|
164 |
+
"eval_steps_per_second": 9.097,
|
165 |
+
"step": 200
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 1.256544502617801,
|
169 |
+
"grad_norm": 1.2942802177914767,
|
170 |
+
"learning_rate": 7.223175895924638e-06,
|
171 |
+
"loss": 0.1241,
|
172 |
+
"step": 210
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 1.3163799551234106,
|
176 |
+
"grad_norm": 1.4364370392498633,
|
177 |
+
"learning_rate": 6.905351881751372e-06,
|
178 |
+
"loss": 0.1254,
|
179 |
+
"step": 220
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 1.37621540762902,
|
183 |
+
"grad_norm": 1.330811194933078,
|
184 |
+
"learning_rate": 6.578245184735513e-06,
|
185 |
+
"loss": 0.1229,
|
186 |
+
"step": 230
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 1.4360508601346298,
|
190 |
+
"grad_norm": 1.304831888309303,
|
191 |
+
"learning_rate": 6.243449435824276e-06,
|
192 |
+
"loss": 0.1147,
|
193 |
+
"step": 240
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 1.4958863126402393,
|
197 |
+
"grad_norm": 1.2398683599838292,
|
198 |
+
"learning_rate": 5.902595726252801e-06,
|
199 |
+
"loss": 0.1345,
|
200 |
+
"step": 250
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 1.555721765145849,
|
204 |
+
"grad_norm": 1.3240317320353998,
|
205 |
+
"learning_rate": 5.557344661031628e-06,
|
206 |
+
"loss": 0.1236,
|
207 |
+
"step": 260
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 1.6155572176514585,
|
211 |
+
"grad_norm": 1.518581095835922,
|
212 |
+
"learning_rate": 5.209378268645998e-06,
|
213 |
+
"loss": 0.1218,
|
214 |
+
"step": 270
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 1.675392670157068,
|
218 |
+
"grad_norm": 1.5653129689570715,
|
219 |
+
"learning_rate": 4.860391806382157e-06,
|
220 |
+
"loss": 0.1246,
|
221 |
+
"step": 280
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 1.7352281226626776,
|
225 |
+
"grad_norm": 1.4836280079781416,
|
226 |
+
"learning_rate": 4.512085501204254e-06,
|
227 |
+
"loss": 0.1156,
|
228 |
+
"step": 290
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 1.795063575168287,
|
232 |
+
"grad_norm": 1.4998045733125407,
|
233 |
+
"learning_rate": 4.166156266419489e-06,
|
234 |
+
"loss": 0.1296,
|
235 |
+
"step": 300
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 1.795063575168287,
|
239 |
+
"eval_loss": 0.19370371103286743,
|
240 |
+
"eval_runtime": 33.117,
|
241 |
+
"eval_samples_per_second": 17.967,
|
242 |
+
"eval_steps_per_second": 8.998,
|
243 |
+
"step": 300
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 1.8548990276738968,
|
247 |
+
"grad_norm": 1.426847361331521,
|
248 |
+
"learning_rate": 3.82428943448705e-06,
|
249 |
+
"loss": 0.1294,
|
250 |
+
"step": 310
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 1.9147344801795063,
|
254 |
+
"grad_norm": 1.1812939999353123,
|
255 |
+
"learning_rate": 3.488150546247778e-06,
|
256 |
+
"loss": 0.1219,
|
257 |
+
"step": 320
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 1.974569932685116,
|
261 |
+
"grad_norm": 1.071812010046448,
|
262 |
+
"learning_rate": 3.1593772365766107e-06,
|
263 |
+
"loss": 0.1106,
|
264 |
+
"step": 330
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.0344053851907256,
|
268 |
+
"grad_norm": 0.9913151474800547,
|
269 |
+
"learning_rate": 2.839571255990088e-06,
|
270 |
+
"loss": 0.0851,
|
271 |
+
"step": 340
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.094240837696335,
|
275 |
+
"grad_norm": 1.0937548000001698,
|
276 |
+
"learning_rate": 2.5302906670788463e-06,
|
277 |
+
"loss": 0.0621,
|
278 |
+
"step": 350
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 2.1540762902019446,
|
282 |
+
"grad_norm": 1.1416547973943143,
|
283 |
+
"learning_rate": 2.23304225378328e-06,
|
284 |
+
"loss": 0.0662,
|
285 |
+
"step": 360
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 2.213911742707554,
|
289 |
+
"grad_norm": 1.2971227147360092,
|
290 |
+
"learning_rate": 1.9492741804936623e-06,
|
291 |
+
"loss": 0.0623,
|
292 |
+
"step": 370
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 2.273747195213164,
|
296 |
+
"grad_norm": 1.0599796926376819,
|
297 |
+
"learning_rate": 1.680368936738792e-06,
|
298 |
+
"loss": 0.0604,
|
299 |
+
"step": 380
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 2.3335826477187736,
|
303 |
+
"grad_norm": 1.0516418140346255,
|
304 |
+
"learning_rate": 1.4276366018359845e-06,
|
305 |
+
"loss": 0.0605,
|
306 |
+
"step": 390
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 2.393418100224383,
|
310 |
+
"grad_norm": 1.1322674065288456,
|
311 |
+
"learning_rate": 1.1923084623163172e-06,
|
312 |
+
"loss": 0.0592,
|
313 |
+
"step": 400
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 2.393418100224383,
|
317 |
+
"eval_loss": 0.21845205128192902,
|
318 |
+
"eval_runtime": 33.1015,
|
319 |
+
"eval_samples_per_second": 17.975,
|
320 |
+
"eval_steps_per_second": 9.003,
|
321 |
+
"step": 400
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 2.4532535527299926,
|
325 |
+
"grad_norm": 1.070168334944103,
|
326 |
+
"learning_rate": 9.7553101322043e-07,
|
327 |
+
"loss": 0.0595,
|
328 |
+
"step": 410
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 2.513089005235602,
|
332 |
+
"grad_norm": 1.1779521251420957,
|
333 |
+
"learning_rate": 7.783603724899258e-07,
|
334 |
+
"loss": 0.0593,
|
335 |
+
"step": 420
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 2.5729244577412116,
|
339 |
+
"grad_norm": 1.0392248842745917,
|
340 |
+
"learning_rate": 6.017571356669183e-07,
|
341 |
+
"loss": 0.0588,
|
342 |
+
"step": 430
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 2.632759910246821,
|
346 |
+
"grad_norm": 1.1454410326378197,
|
347 |
+
"learning_rate": 4.4658169596911493e-07,
|
348 |
+
"loss": 0.0599,
|
349 |
+
"step": 440
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 2.6925953627524306,
|
353 |
+
"grad_norm": 1.2414977662809759,
|
354 |
+
"learning_rate": 3.135900525405428e-07,
|
355 |
+
"loss": 0.0596,
|
356 |
+
"step": 450
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 2.75243081525804,
|
360 |
+
"grad_norm": 0.9458175216720401,
|
361 |
+
"learning_rate": 2.0343012729971244e-07,
|
362 |
+
"loss": 0.0561,
|
363 |
+
"step": 460
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 2.81226626776365,
|
367 |
+
"grad_norm": 1.2677156882489358,
|
368 |
+
"learning_rate": 1.166386083291604e-07,
|
369 |
+
"loss": 0.0566,
|
370 |
+
"step": 470
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"epoch": 2.8721017202692596,
|
374 |
+
"grad_norm": 1.0894838908576727,
|
375 |
+
"learning_rate": 5.363833518505834e-08,
|
376 |
+
"loss": 0.0608,
|
377 |
+
"step": 480
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 2.931937172774869,
|
381 |
+
"grad_norm": 0.8300865767642356,
|
382 |
+
"learning_rate": 1.4736238865398766e-08,
|
383 |
+
"loss": 0.0548,
|
384 |
+
"step": 490
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 2.9917726252804786,
|
388 |
+
"grad_norm": 1.1224586519889344,
|
389 |
+
"learning_rate": 1.2184647302626585e-10,
|
390 |
+
"loss": 0.0646,
|
391 |
+
"step": 500
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 2.9917726252804786,
|
395 |
+
"eval_loss": 0.21988336741924286,
|
396 |
+
"eval_runtime": 33.0412,
|
397 |
+
"eval_samples_per_second": 18.008,
|
398 |
+
"eval_steps_per_second": 9.019,
|
399 |
+
"step": 500
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 2.99775617053104,
|
403 |
+
"step": 501,
|
404 |
+
"total_flos": 9861900926976.0,
|
405 |
+
"train_loss": 0.14637824013353345,
|
406 |
+
"train_runtime": 2877.8871,
|
407 |
+
"train_samples_per_second": 5.575,
|
408 |
+
"train_steps_per_second": 0.174
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"logging_steps": 10,
|
412 |
+
"max_steps": 501,
|
413 |
+
"num_input_tokens_seen": 0,
|
414 |
+
"num_train_epochs": 3,
|
415 |
+
"save_steps": 100,
|
416 |
+
"stateful_callbacks": {
|
417 |
+
"TrainerControl": {
|
418 |
+
"args": {
|
419 |
+
"should_epoch_stop": false,
|
420 |
+
"should_evaluate": false,
|
421 |
+
"should_log": false,
|
422 |
+
"should_save": true,
|
423 |
+
"should_training_stop": true
|
424 |
+
},
|
425 |
+
"attributes": {}
|
426 |
+
}
|
427 |
+
},
|
428 |
+
"total_flos": 9861900926976.0,
|
429 |
+
"train_batch_size": 4,
|
430 |
+
"trial_name": null,
|
431 |
+
"trial_params": null
|
432 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c55c58948e8afc077e48195f785a8748c26798bf221aa34845e792f426b48311
|
3 |
+
size 7096
|
training_eval_loss.png
ADDED
training_loss.png
ADDED