File size: 17,564 Bytes
df8b98e
4b7d6e9
b56296a
 
 
 
 
 
 
c4a7ff3
b56296a
 
df8b98e
 
c4a7ff3
 
39ec458
 
 
c4a7ff3
39ec458
c4a7ff3
39ec458
c4a7ff3
39ec458
c4a7ff3
39ec458
c4a7ff3
39ec458
 
 
 
 
 
 
c4a7ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39ec458
 
 
c4a7ff3
39ec458
c4a7ff3
39ec458
 
 
c4a7ff3
39ec458
c4a7ff3
39ec458
 
 
c4a7ff3
39ec458
c4a7ff3
39ec458
c4a7ff3
39ec458
c4a7ff3
39ec458
c4a7ff3
 
 
39ec458
 
 
 
 
 
 
 
 
c4a7ff3
39ec458
c4a7ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39ec458
c4a7ff3
39ec458
 
 
 
 
 
 
 
 
 
 
db10151
 
 
 
 
 
 
 
 
 
 
39ec458
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
---
tags:
  - safe
  - datamol-io
  - molecule-design
  - smiles
  - generated_from_trainer
datasets:
  - katielink/moses
model-index:
  - name: SAFE_20M
    results: []
---

# SAFE_20M

SAFE_20M is a transformer-based model designed for molecular generation tasks. This model was trained from scratch on the [MOSES](https://huggingface.co/datasets/katielink/moses) dataset, which has been converted from SMILES to the SAFE (SMILES Augmented For Encoding) format to enhance molecular representation for machine learning applications.

## Evaluation Results

On the evaluation set, SAFE_20M achieved the following result:

- **Loss:** 0.4024

## Model Description

SAFE_20M leverages the SAFE framework to generate valid and diverse molecular structures. By converting the MOSES dataset from SMILES to SAFE format, the model benefits from improved molecular encoding, facilitating better performance in various applications such as:

- **Drug Discovery:** Identifying potential drug candidates with desirable properties.
- **Materials Science:** Designing new materials with specific characteristics.
- **Chemical Engineering:** Innovating chemical processes and compounds.

### SAFE Framework

The SAFE framework, integral to SAFE_20M, was introduced in the following paper:

```bibtex
@article{noutahi2024gotta,
  title={Gotta be SAFE: a new framework for molecular design},
  author={Noutahi, Emmanuel and Gabellini, Cristian and Craig, Michael and Lim, Jonathan SC and Tossou, Prudencio},
  journal={Digital Discovery},
  volume={3},
  number={4},
  pages={796--804},
  year={2024},
  publisher={Royal Society of Chemistry}
}
```

We acknowledge and thank the authors for their valuable contribution to the field of molecular design.

## Intended Uses & Limitations

### Intended Uses

SAFE_20M is primarily intended for:

- **Generating Molecular Structures:** Creating novel molecules with desired properties.
- **Exploring Chemical Space:** Navigating the vast landscape of possible chemical compounds for research and development.
- **Assisting in Material Design:** Facilitating the creation of new materials with specific functionalities.

### Limitations

- **Validation Required:** Outputs should be validated by domain experts before practical application.
- **Synthetic Feasibility:** Generated molecules may not always be synthetically feasible.
- **Dataset Scope:** The model's knowledge is limited to the chemical space represented in the MOSES dataset.

## Training and Evaluation Data

The model was trained on the [MOSES (MOlecular SEtS)](https://huggingface.co/datasets/katielink/moses) dataset, a benchmark dataset for molecular generation. The dataset was converted from SMILES to the SAFE format to enhance molecular representation for machine learning tasks.

## Training Procedure

### Training Hyperparameters

The following hyperparameters were used during training:

- **Learning Rate:** 0.0005
- **Training Batch Size:** 32
- **Evaluation Batch Size:** 32
- **Seed:** 42
- **Gradient Accumulation Steps:** 2
- **Total Training Batch Size:** 64
- **Optimizer:** Adam (betas=(0.9, 0.999), epsilon=1e-08)
- **Learning Rate Scheduler:** Linear with 20,000 warmup steps
- **Number of Epochs:** 10

### Training Results

| Training Loss | Epoch  |  Step  | Validation Loss |
| :-----------: | :----: | :----: | :-------------: |
|    1.1548     | 0.0407 |  1000  |     1.0531      |
|    0.8384     | 0.0813 |  2000  |     0.7846      |
|    0.7327     | 0.1220 |  3000  |     0.6928      |
|    0.6825     | 0.1626 |  4000  |     0.6570      |
|    0.6468     | 0.2033 |  5000  |     0.6206      |
|    0.6235     | 0.2440 |  6000  |     0.5964      |
|    0.6063     | 0.2846 |  7000  |     0.5838      |
|    0.5904     | 0.3253 |  8000  |     0.5679      |
|    0.5791     | 0.3660 |  9000  |     0.5593      |
|    0.5699     | 0.4066 | 10000  |     0.5527      |
|    0.5641     | 0.4473 | 11000  |     0.5441      |
|    0.5537     | 0.4879 | 12000  |     0.5399      |
|    0.5518     | 0.5286 | 13000  |     0.5355      |
|    0.5501     | 0.5693 | 14000  |     0.5353      |
|     0.542     | 0.6099 | 15000  |     0.5278      |
|    0.5422     | 0.6506 | 16000  |     0.5263      |
|    0.5367     | 0.6912 | 17000  |     0.5239      |
|    0.5366     | 0.7319 | 18000  |     0.5206      |
|    0.5339     | 0.7726 | 19000  |     0.5206      |
|    0.5349     | 0.8132 | 20000  |     0.5160      |
|    0.5248     | 0.8539 | 21000  |     0.5158      |
|    0.5221     | 0.8945 | 22000  |     0.5082      |
|    0.5172     | 0.9352 | 23000  |     0.5077      |
|    0.5122     | 0.9759 | 24000  |     0.5030      |
|    0.5094     | 1.0165 | 25000  |     0.5002      |
|     0.507     | 1.0572 | 26000  |     0.4983      |
|     0.508     | 1.0979 | 27000  |     0.4935      |
|    0.5041     | 1.1385 | 28000  |     0.4934      |
|     0.502     | 1.1792 | 29000  |     0.4920      |
|    0.5021     | 1.2198 | 30000  |     0.4888      |
|    0.5005     | 1.2605 | 31000  |     0.4882      |
|    0.4973     | 1.3012 | 32000  |     0.4876      |
|    0.4954     | 1.3418 | 33000  |     0.4859      |
|    0.4914     | 1.3825 | 34000  |     0.4843      |
|    0.4946     | 1.4231 | 35000  |     0.4837      |
|    0.4908     | 1.4638 | 36000  |     0.4810      |
|    0.4905     | 1.5045 | 37000  |     0.4806      |
|    0.4881     | 1.5451 | 38000  |     0.4791      |
|    0.4868     | 1.5858 | 39000  |     0.4780      |
|    0.4896     | 1.6264 | 40000  |     0.4777      |
|     0.484     | 1.6671 | 41000  |     0.4774      |
|    0.4855     | 1.7078 | 42000  |     0.4742      |
|    0.4837     | 1.7484 | 43000  |     0.4742      |
|    0.4874     | 1.7891 | 44000  |     0.4743      |
|    0.4817     | 1.8298 | 45000  |     0.4727      |
|    0.4811     | 1.8704 | 46000  |     0.4732      |
|    0.4801     | 1.9111 | 47000  |     0.4713      |
|    0.4808     | 1.9517 | 48000  |     0.4710      |
|    0.4797     | 1.9924 | 49000  |     0.4703      |
|    0.4765     | 2.0331 | 50000  |     0.4697      |
|    0.4762     | 2.0737 | 51000  |     0.4684      |
|    0.4776     | 2.1144 | 52000  |     0.4682      |
|    0.4744     | 2.1550 | 53000  |     0.4691      |
|    0.4756     | 2.1957 | 54000  |     0.4674      |
|    0.4741     | 2.2364 | 55000  |     0.4661      |
|    0.4746     | 2.2770 | 56000  |     0.4669      |
|    0.4726     | 2.3177 | 57000  |     0.4660      |
|    0.4716     | 2.3583 | 58000  |     0.4647      |
|    0.4718     | 2.3990 | 59000  |     0.4648      |
|    0.4711     | 2.4397 | 60000  |     0.4638      |
|    0.4718     | 2.4803 | 61000  |     0.4643      |
|    0.4699     | 2.5210 | 62000  |     0.4631      |
|    0.4706     | 2.5617 | 63000  |     0.4622      |
|     0.473     | 2.6023 | 64000  |     0.4623      |
|    0.4671     | 2.6430 | 65000  |     0.4613      |
|    0.4677     | 2.6836 | 66000  |     0.4621      |
|    0.4681     | 2.7243 | 67000  |     0.4609      |
|    0.4718     | 2.7650 | 68000  |     0.4600      |
|    0.4649     | 2.8056 | 69000  |     0.4598      |
|    0.4659     | 2.8463 | 70000  |     0.4596      |
|    0.4661     | 2.8869 | 71000  |     0.4589      |
|    0.4651     | 2.9276 | 72000  |     0.4586      |
|    0.4659     | 2.9683 | 73000  |     0.4581      |
|    0.4629     | 3.0089 | 74000  |     0.4580      |
|    0.4631     | 3.0496 | 75000  |     0.4589      |
|    0.4638     | 3.0902 | 76000  |     0.4574      |
|    0.4623     | 3.1309 | 77000  |     0.4566      |
|    0.4631     | 3.1716 | 78000  |     0.4565      |
|    0.4633     | 3.2122 | 79000  |     0.4557      |
|    0.4609     | 3.2529 | 80000  |     0.4549      |
|    0.4616     | 3.2936 | 81000  |     0.4546      |
|    0.4613     | 3.3342 | 82000  |     0.4557      |
|    0.4602     | 3.3749 | 83000  |     0.4544      |
|    0.4612     | 3.4155 | 84000  |     0.4550      |
|    0.4588     | 3.4562 | 85000  |     0.4532      |
|    0.4602     | 3.4969 | 86000  |     0.4531      |
|     0.459     | 3.5375 | 87000  |     0.4537      |
|    0.4598     | 3.5782 | 88000  |     0.4528      |
|    0.4606     | 3.6188 | 89000  |     0.4530      |
|    0.4614     | 3.6595 | 90000  |     0.4523      |
|    0.4575     | 3.7002 | 91000  |     0.4515      |
|    0.4601     | 3.7408 | 92000  |     0.4517      |
|    0.4578     | 3.7815 | 93000  |     0.4517      |
|    0.4573     | 3.8221 | 94000  |     0.4507      |
|     0.457     | 3.8628 | 95000  |     0.4508      |
|    0.4596     | 3.9035 | 96000  |     0.4507      |
|    0.4566     | 3.9441 | 97000  |     0.4498      |
|    0.4571     | 3.9848 | 98000  |     0.4491      |
|    0.4529     | 4.0255 | 99000  |     0.4504      |
|    0.4515     | 4.0661 | 100000 |     0.4496      |
|    0.4525     | 4.1068 | 101000 |     0.4492      |
|    0.4534     | 4.1474 | 102000 |     0.4489      |
|    0.4533     | 4.1881 | 103000 |     0.4484      |
|    0.4544     | 4.2288 | 104000 |     0.4471      |
|    0.4524     | 4.2694 | 105000 |     0.4473      |
|    0.4524     | 4.3101 | 106000 |     0.4478      |
|    0.4535     | 4.3507 | 107000 |     0.4462      |
|    0.4531     | 4.3914 | 108000 |     0.4463      |
|     0.452     | 4.4321 | 109000 |     0.4467      |
|    0.4535     | 4.4727 | 110000 |     0.4460      |
|    0.4523     | 4.5134 | 111000 |     0.4459      |
|    0.4512     | 4.5540 | 112000 |     0.4454      |
|    0.4487     | 4.5947 | 113000 |     0.4454      |
|    0.4503     | 4.6354 | 114000 |     0.4453      |
|    0.4528     | 4.6760 | 115000 |     0.4444      |
|    0.4482     | 4.7167 | 116000 |     0.4444      |
|    0.4508     | 4.7574 | 117000 |     0.4435      |
|    0.4517     | 4.7980 | 118000 |     0.4438      |
|    0.4484     | 4.8387 | 119000 |     0.4441      |
|    0.4509     | 4.8793 | 120000 |     0.4437      |
|    0.4485     | 4.9200 | 121000 |     0.4429      |
|    0.4507     | 4.9607 | 122000 |     0.4428      |
|    0.4462     | 5.0013 | 123000 |     0.4424      |
|    0.4469     | 5.0420 | 124000 |     0.4419      |
|    0.4454     | 5.0826 | 125000 |     0.4421      |
|    0.4478     | 5.1233 | 126000 |     0.4413      |
|     0.445     | 5.1640 | 127000 |     0.4413      |
|    0.4456     | 5.2046 | 128000 |     0.4404      |
|    0.4447     | 5.2453 | 129000 |     0.4405      |
|    0.4451     | 5.2859 | 130000 |     0.4405      |
|    0.4464     | 5.3266 | 131000 |     0.4411      |
|    0.4441     | 5.3673 | 132000 |     0.4392      |
|    0.4446     | 5.4079 | 133000 |     0.4405      |
|    0.4427     | 5.4486 | 134000 |     0.4391      |
|    0.4431     | 5.4893 | 135000 |     0.4390      |
|    0.4469     | 5.5299 | 136000 |     0.4391      |
|    0.4421     | 5.5706 | 137000 |     0.4387      |
|    0.4444     | 5.6112 | 138000 |     0.4378      |
|    0.4431     | 5.6519 | 139000 |     0.4374      |
|    0.4422     | 5.6926 | 140000 |     0.4369      |
|    0.4409     | 5.7332 | 141000 |     0.4373      |
|     0.444     | 5.7739 | 142000 |     0.4368      |
|    0.4423     | 5.8145 | 143000 |     0.4376      |
|    0.4418     | 5.8552 | 144000 |     0.4370      |
|    0.4409     | 5.8959 | 145000 |     0.4352      |
|    0.4416     | 5.9365 | 146000 |     0.4358      |
|     0.44      | 5.9772 | 147000 |     0.4357      |
|     0.437     | 6.0179 | 148000 |     0.4347      |
|    0.4355     | 6.0585 | 149000 |     0.4350      |
|    0.4371     | 6.0992 | 150000 |     0.4346      |
|    0.4364     | 6.1398 | 151000 |     0.4350      |
|    0.4365     | 6.1805 | 152000 |     0.4336      |
|    0.4374     | 6.2212 | 153000 |     0.4336      |
|    0.4354     | 6.2618 | 154000 |     0.4335      |
|    0.4364     | 6.3025 | 155000 |     0.4335      |
|     0.436     | 6.3431 | 156000 |     0.4327      |
|    0.4365     | 6.3838 | 157000 |     0.4332      |
|    0.4368     | 6.4245 | 158000 |     0.4320      |
|    0.4363     | 6.4651 | 159000 |     0.4317      |
|    0.4367     | 6.5058 | 160000 |     0.4320      |
|     0.436     | 6.5464 | 161000 |     0.4316      |
|    0.4351     | 6.5871 | 162000 |     0.4317      |
|     0.436     | 6.6278 | 163000 |     0.4310      |
|    0.4334     | 6.6684 | 164000 |     0.4307      |
|    0.4348     | 6.7091 | 165000 |     0.4301      |
|    0.4357     | 6.7498 | 166000 |     0.4293      |
|    0.4327     | 6.7904 | 167000 |     0.4295      |
|    0.4348     | 6.8311 | 168000 |     0.4294      |
|    0.4323     | 6.8717 | 169000 |     0.4284      |
|    0.4334     | 6.9124 | 170000 |     0.4283      |
|    0.4317     | 6.9531 | 171000 |     0.4279      |
|     0.433     | 6.9937 | 172000 |     0.4284      |
|    0.4273     | 7.0344 | 173000 |     0.4279      |
|    0.4272     | 7.0750 | 174000 |     0.4275      |
|    0.4265     | 7.1157 | 175000 |     0.4269      |
|    0.4287     | 7.1564 | 176000 |     0.4268      |
|    0.4282     | 7.1970 | 177000 |     0.4264      |
|    0.4267     | 7.2377 | 178000 |     0.4267      |
|    0.4271     | 7.2783 | 179000 |     0.4256      |
|    0.4282     | 7.3190 | 180000 |     0.4254      |
|     0.427     | 7.3597 | 181000 |     0.4251      |
|    0.4262     | 7.4003 | 182000 |     0.4249      |
|    0.4272     | 7.4410 | 183000 |     0.4248      |
|    0.4271     | 7.4817 | 184000 |     0.4243      |
|    0.4261     | 7.5223 | 185000 |     0.4236      |
|    0.4273     | 7.5630 | 186000 |     0.4237      |
|    0.4262     | 7.6036 | 187000 |     0.4238      |
|     0.426     | 7.6443 | 188000 |     0.4232      |
|    0.4243     | 7.6850 | 189000 |     0.4226      |
|    0.4242     | 7.7256 | 190000 |     0.4219      |
|     0.427     | 7.7663 | 191000 |     0.4215      |
|    0.4236     | 7.8069 | 192000 |     0.4211      |
|     0.422     | 7.8476 | 193000 |     0.4211      |
|    0.4224     | 7.8883 | 194000 |     0.4204      |
|    0.4237     | 7.9289 | 195000 |     0.4201      |
|     0.424     | 7.9696 | 196000 |     0.4200      |
|    0.4161     | 8.0102 | 197000 |     0.4196      |
|    0.4172     | 8.0509 | 198000 |     0.4193      |
|    0.4165     | 8.0916 | 199000 |     0.4192      |
|    0.4151     | 8.1322 | 200000 |     0.4189      |
|     0.417     | 8.1729 | 201000 |     0.4184      |
|    0.4172     | 8.2136 | 202000 |     0.4182      |
|    0.4181     | 8.2542 | 203000 |     0.4180      |
|    0.4167     | 8.2949 | 204000 |     0.4170      |
|    0.4184     | 8.3355 | 205000 |     0.4168      |
|    0.4148     | 8.3762 | 206000 |     0.4164      |
|    0.4171     | 8.4169 | 207000 |     0.4157      |
|     0.417     | 8.4575 | 208000 |     0.4158      |
|    0.4174     | 8.4982 | 209000 |     0.4153      |
|    0.4159     | 8.5388 | 210000 |     0.4149      |
|    0.4141     | 8.5795 | 211000 |     0.4149      |
|    0.4141     | 8.6202 | 212000 |     0.4144      |
|    0.4121     | 8.6608 | 213000 |     0.4139      |
|    0.4134     | 8.7015 | 214000 |     0.4133      |
|    0.4126     | 8.7421 | 215000 |     0.4135      |
|    0.4141     | 8.7828 | 216000 |     0.4125      |
|    0.4126     | 8.8235 | 217000 |     0.4125      |
|    0.4117     | 8.8641 | 218000 |     0.4119      |
|    0.4114     | 8.9048 | 219000 |     0.4115      |
|    0.4102     | 8.9455 | 220000 |     0.4113      |
|    0.4123     | 8.9861 | 221000 |     0.4103      |
|    0.4045     | 9.0268 | 222000 |     0.4104      |
|    0.4039     | 9.0674 | 223000 |     0.4104      |
|    0.4042     | 9.1081 | 224000 |     0.4100      |
|    0.4063     | 9.1488 | 225000 |     0.4092      |
|    0.4045     | 9.1894 | 226000 |     0.4091      |
|    0.4052     | 9.2301 | 227000 |     0.4086      |
|    0.4041     | 9.2707 | 228000 |     0.4082      |
|    0.4042     | 9.3114 | 229000 |     0.4077      |
|     0.403     | 9.3521 | 230000 |     0.4077      |
|    0.4047     | 9.3927 | 231000 |     0.4070      |
|    0.4014     | 9.4334 | 232000 |     0.4067      |
|    0.4032     | 9.4740 | 233000 |     0.4062      |
|    0.4018     | 9.5147 | 234000 |     0.4059      |
|    0.4015     | 9.5554 | 235000 |     0.4054      |
|    0.4005     | 9.5960 | 236000 |     0.4050      |
|    0.4016     | 9.6367 | 237000 |     0.4049      |
|    0.4012     | 9.6774 | 238000 |     0.4043      |
|    0.4014     | 9.7180 | 239000 |     0.4040      |
|    0.3995     | 9.7587 | 240000 |     0.4037      |
|     0.398     | 9.7993 | 241000 |     0.4035      |
|    0.3979     | 9.8400 | 242000 |     0.4032      |
|    0.3965     | 9.8807 | 243000 |     0.4029      |
|    0.3983     | 9.9213 | 244000 |     0.4026      |
|    0.3997     | 9.9620 | 245000 |     0.4025      |

### Framework Versions

- **Transformers:** 4.43.3
- **PyTorch:** 2.4.0+cu121
- **Datasets:** 2.20.0
- **Tokenizers:** 0.19.1

## Acknowledgements

We acknowledge and thank the authors of the SAFE framework for their valuable contribution to the field of molecular design.

## References

```bibtex
@inproceedings{
  lombard2024molecular,
  title={Molecular Generation with State Space Sequence Models},
  author={Anri Lombard and Shane Acton and Ulrich Armel Mbou Sob and Jan Buys},
  booktitle={NeurIPS 2024 Workshop on AI for New Drug Modalities},
  year={2024},
  url={https://openreview.net/forum?id=1ib5oyTQIb}
}
```

```bibtex
@article{noutahi2024gotta,
  title={Gotta be SAFE: a new framework for molecular design},
  author={Noutahi, Emmanuel and Gabellini, Cristian and Craig, Michael and Lim, Jonathan SC and Tossou, Prudencio},
  journal={Digital Discovery},
  volume={3},
  number={4},
  pages={796--804},
  year={2024},
  publisher={Royal Society of Chemistry}
}
```