File size: 17,564 Bytes
df8b98e 4b7d6e9 b56296a c4a7ff3 b56296a df8b98e c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 c4a7ff3 39ec458 db10151 39ec458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
---
tags:
- safe
- datamol-io
- molecule-design
- smiles
- generated_from_trainer
datasets:
- katielink/moses
model-index:
- name: SAFE_20M
results: []
---
# SAFE_20M
SAFE_20M is a transformer-based model designed for molecular generation tasks. This model was trained from scratch on the [MOSES](https://huggingface.co/datasets/katielink/moses) dataset, which has been converted from SMILES to the SAFE (SMILES Augmented For Encoding) format to enhance molecular representation for machine learning applications.
## Evaluation Results
On the evaluation set, SAFE_20M achieved the following result:
- **Loss:** 0.4024
## Model Description
SAFE_20M leverages the SAFE framework to generate valid and diverse molecular structures. By converting the MOSES dataset from SMILES to SAFE format, the model benefits from improved molecular encoding, facilitating better performance in various applications such as:
- **Drug Discovery:** Identifying potential drug candidates with desirable properties.
- **Materials Science:** Designing new materials with specific characteristics.
- **Chemical Engineering:** Innovating chemical processes and compounds.
### SAFE Framework
The SAFE framework, integral to SAFE_20M, was introduced in the following paper:
```bibtex
@article{noutahi2024gotta,
title={Gotta be SAFE: a new framework for molecular design},
author={Noutahi, Emmanuel and Gabellini, Cristian and Craig, Michael and Lim, Jonathan SC and Tossou, Prudencio},
journal={Digital Discovery},
volume={3},
number={4},
pages={796--804},
year={2024},
publisher={Royal Society of Chemistry}
}
```
We acknowledge and thank the authors for their valuable contribution to the field of molecular design.
## Intended Uses & Limitations
### Intended Uses
SAFE_20M is primarily intended for:
- **Generating Molecular Structures:** Creating novel molecules with desired properties.
- **Exploring Chemical Space:** Navigating the vast landscape of possible chemical compounds for research and development.
- **Assisting in Material Design:** Facilitating the creation of new materials with specific functionalities.
### Limitations
- **Validation Required:** Outputs should be validated by domain experts before practical application.
- **Synthetic Feasibility:** Generated molecules may not always be synthetically feasible.
- **Dataset Scope:** The model's knowledge is limited to the chemical space represented in the MOSES dataset.
## Training and Evaluation Data
The model was trained on the [MOSES (MOlecular SEtS)](https://huggingface.co/datasets/katielink/moses) dataset, a benchmark dataset for molecular generation. The dataset was converted from SMILES to the SAFE format to enhance molecular representation for machine learning tasks.
## Training Procedure
### Training Hyperparameters
The following hyperparameters were used during training:
- **Learning Rate:** 0.0005
- **Training Batch Size:** 32
- **Evaluation Batch Size:** 32
- **Seed:** 42
- **Gradient Accumulation Steps:** 2
- **Total Training Batch Size:** 64
- **Optimizer:** Adam (betas=(0.9, 0.999), epsilon=1e-08)
- **Learning Rate Scheduler:** Linear with 20,000 warmup steps
- **Number of Epochs:** 10
### Training Results
| Training Loss | Epoch | Step | Validation Loss |
| :-----------: | :----: | :----: | :-------------: |
| 1.1548 | 0.0407 | 1000 | 1.0531 |
| 0.8384 | 0.0813 | 2000 | 0.7846 |
| 0.7327 | 0.1220 | 3000 | 0.6928 |
| 0.6825 | 0.1626 | 4000 | 0.6570 |
| 0.6468 | 0.2033 | 5000 | 0.6206 |
| 0.6235 | 0.2440 | 6000 | 0.5964 |
| 0.6063 | 0.2846 | 7000 | 0.5838 |
| 0.5904 | 0.3253 | 8000 | 0.5679 |
| 0.5791 | 0.3660 | 9000 | 0.5593 |
| 0.5699 | 0.4066 | 10000 | 0.5527 |
| 0.5641 | 0.4473 | 11000 | 0.5441 |
| 0.5537 | 0.4879 | 12000 | 0.5399 |
| 0.5518 | 0.5286 | 13000 | 0.5355 |
| 0.5501 | 0.5693 | 14000 | 0.5353 |
| 0.542 | 0.6099 | 15000 | 0.5278 |
| 0.5422 | 0.6506 | 16000 | 0.5263 |
| 0.5367 | 0.6912 | 17000 | 0.5239 |
| 0.5366 | 0.7319 | 18000 | 0.5206 |
| 0.5339 | 0.7726 | 19000 | 0.5206 |
| 0.5349 | 0.8132 | 20000 | 0.5160 |
| 0.5248 | 0.8539 | 21000 | 0.5158 |
| 0.5221 | 0.8945 | 22000 | 0.5082 |
| 0.5172 | 0.9352 | 23000 | 0.5077 |
| 0.5122 | 0.9759 | 24000 | 0.5030 |
| 0.5094 | 1.0165 | 25000 | 0.5002 |
| 0.507 | 1.0572 | 26000 | 0.4983 |
| 0.508 | 1.0979 | 27000 | 0.4935 |
| 0.5041 | 1.1385 | 28000 | 0.4934 |
| 0.502 | 1.1792 | 29000 | 0.4920 |
| 0.5021 | 1.2198 | 30000 | 0.4888 |
| 0.5005 | 1.2605 | 31000 | 0.4882 |
| 0.4973 | 1.3012 | 32000 | 0.4876 |
| 0.4954 | 1.3418 | 33000 | 0.4859 |
| 0.4914 | 1.3825 | 34000 | 0.4843 |
| 0.4946 | 1.4231 | 35000 | 0.4837 |
| 0.4908 | 1.4638 | 36000 | 0.4810 |
| 0.4905 | 1.5045 | 37000 | 0.4806 |
| 0.4881 | 1.5451 | 38000 | 0.4791 |
| 0.4868 | 1.5858 | 39000 | 0.4780 |
| 0.4896 | 1.6264 | 40000 | 0.4777 |
| 0.484 | 1.6671 | 41000 | 0.4774 |
| 0.4855 | 1.7078 | 42000 | 0.4742 |
| 0.4837 | 1.7484 | 43000 | 0.4742 |
| 0.4874 | 1.7891 | 44000 | 0.4743 |
| 0.4817 | 1.8298 | 45000 | 0.4727 |
| 0.4811 | 1.8704 | 46000 | 0.4732 |
| 0.4801 | 1.9111 | 47000 | 0.4713 |
| 0.4808 | 1.9517 | 48000 | 0.4710 |
| 0.4797 | 1.9924 | 49000 | 0.4703 |
| 0.4765 | 2.0331 | 50000 | 0.4697 |
| 0.4762 | 2.0737 | 51000 | 0.4684 |
| 0.4776 | 2.1144 | 52000 | 0.4682 |
| 0.4744 | 2.1550 | 53000 | 0.4691 |
| 0.4756 | 2.1957 | 54000 | 0.4674 |
| 0.4741 | 2.2364 | 55000 | 0.4661 |
| 0.4746 | 2.2770 | 56000 | 0.4669 |
| 0.4726 | 2.3177 | 57000 | 0.4660 |
| 0.4716 | 2.3583 | 58000 | 0.4647 |
| 0.4718 | 2.3990 | 59000 | 0.4648 |
| 0.4711 | 2.4397 | 60000 | 0.4638 |
| 0.4718 | 2.4803 | 61000 | 0.4643 |
| 0.4699 | 2.5210 | 62000 | 0.4631 |
| 0.4706 | 2.5617 | 63000 | 0.4622 |
| 0.473 | 2.6023 | 64000 | 0.4623 |
| 0.4671 | 2.6430 | 65000 | 0.4613 |
| 0.4677 | 2.6836 | 66000 | 0.4621 |
| 0.4681 | 2.7243 | 67000 | 0.4609 |
| 0.4718 | 2.7650 | 68000 | 0.4600 |
| 0.4649 | 2.8056 | 69000 | 0.4598 |
| 0.4659 | 2.8463 | 70000 | 0.4596 |
| 0.4661 | 2.8869 | 71000 | 0.4589 |
| 0.4651 | 2.9276 | 72000 | 0.4586 |
| 0.4659 | 2.9683 | 73000 | 0.4581 |
| 0.4629 | 3.0089 | 74000 | 0.4580 |
| 0.4631 | 3.0496 | 75000 | 0.4589 |
| 0.4638 | 3.0902 | 76000 | 0.4574 |
| 0.4623 | 3.1309 | 77000 | 0.4566 |
| 0.4631 | 3.1716 | 78000 | 0.4565 |
| 0.4633 | 3.2122 | 79000 | 0.4557 |
| 0.4609 | 3.2529 | 80000 | 0.4549 |
| 0.4616 | 3.2936 | 81000 | 0.4546 |
| 0.4613 | 3.3342 | 82000 | 0.4557 |
| 0.4602 | 3.3749 | 83000 | 0.4544 |
| 0.4612 | 3.4155 | 84000 | 0.4550 |
| 0.4588 | 3.4562 | 85000 | 0.4532 |
| 0.4602 | 3.4969 | 86000 | 0.4531 |
| 0.459 | 3.5375 | 87000 | 0.4537 |
| 0.4598 | 3.5782 | 88000 | 0.4528 |
| 0.4606 | 3.6188 | 89000 | 0.4530 |
| 0.4614 | 3.6595 | 90000 | 0.4523 |
| 0.4575 | 3.7002 | 91000 | 0.4515 |
| 0.4601 | 3.7408 | 92000 | 0.4517 |
| 0.4578 | 3.7815 | 93000 | 0.4517 |
| 0.4573 | 3.8221 | 94000 | 0.4507 |
| 0.457 | 3.8628 | 95000 | 0.4508 |
| 0.4596 | 3.9035 | 96000 | 0.4507 |
| 0.4566 | 3.9441 | 97000 | 0.4498 |
| 0.4571 | 3.9848 | 98000 | 0.4491 |
| 0.4529 | 4.0255 | 99000 | 0.4504 |
| 0.4515 | 4.0661 | 100000 | 0.4496 |
| 0.4525 | 4.1068 | 101000 | 0.4492 |
| 0.4534 | 4.1474 | 102000 | 0.4489 |
| 0.4533 | 4.1881 | 103000 | 0.4484 |
| 0.4544 | 4.2288 | 104000 | 0.4471 |
| 0.4524 | 4.2694 | 105000 | 0.4473 |
| 0.4524 | 4.3101 | 106000 | 0.4478 |
| 0.4535 | 4.3507 | 107000 | 0.4462 |
| 0.4531 | 4.3914 | 108000 | 0.4463 |
| 0.452 | 4.4321 | 109000 | 0.4467 |
| 0.4535 | 4.4727 | 110000 | 0.4460 |
| 0.4523 | 4.5134 | 111000 | 0.4459 |
| 0.4512 | 4.5540 | 112000 | 0.4454 |
| 0.4487 | 4.5947 | 113000 | 0.4454 |
| 0.4503 | 4.6354 | 114000 | 0.4453 |
| 0.4528 | 4.6760 | 115000 | 0.4444 |
| 0.4482 | 4.7167 | 116000 | 0.4444 |
| 0.4508 | 4.7574 | 117000 | 0.4435 |
| 0.4517 | 4.7980 | 118000 | 0.4438 |
| 0.4484 | 4.8387 | 119000 | 0.4441 |
| 0.4509 | 4.8793 | 120000 | 0.4437 |
| 0.4485 | 4.9200 | 121000 | 0.4429 |
| 0.4507 | 4.9607 | 122000 | 0.4428 |
| 0.4462 | 5.0013 | 123000 | 0.4424 |
| 0.4469 | 5.0420 | 124000 | 0.4419 |
| 0.4454 | 5.0826 | 125000 | 0.4421 |
| 0.4478 | 5.1233 | 126000 | 0.4413 |
| 0.445 | 5.1640 | 127000 | 0.4413 |
| 0.4456 | 5.2046 | 128000 | 0.4404 |
| 0.4447 | 5.2453 | 129000 | 0.4405 |
| 0.4451 | 5.2859 | 130000 | 0.4405 |
| 0.4464 | 5.3266 | 131000 | 0.4411 |
| 0.4441 | 5.3673 | 132000 | 0.4392 |
| 0.4446 | 5.4079 | 133000 | 0.4405 |
| 0.4427 | 5.4486 | 134000 | 0.4391 |
| 0.4431 | 5.4893 | 135000 | 0.4390 |
| 0.4469 | 5.5299 | 136000 | 0.4391 |
| 0.4421 | 5.5706 | 137000 | 0.4387 |
| 0.4444 | 5.6112 | 138000 | 0.4378 |
| 0.4431 | 5.6519 | 139000 | 0.4374 |
| 0.4422 | 5.6926 | 140000 | 0.4369 |
| 0.4409 | 5.7332 | 141000 | 0.4373 |
| 0.444 | 5.7739 | 142000 | 0.4368 |
| 0.4423 | 5.8145 | 143000 | 0.4376 |
| 0.4418 | 5.8552 | 144000 | 0.4370 |
| 0.4409 | 5.8959 | 145000 | 0.4352 |
| 0.4416 | 5.9365 | 146000 | 0.4358 |
| 0.44 | 5.9772 | 147000 | 0.4357 |
| 0.437 | 6.0179 | 148000 | 0.4347 |
| 0.4355 | 6.0585 | 149000 | 0.4350 |
| 0.4371 | 6.0992 | 150000 | 0.4346 |
| 0.4364 | 6.1398 | 151000 | 0.4350 |
| 0.4365 | 6.1805 | 152000 | 0.4336 |
| 0.4374 | 6.2212 | 153000 | 0.4336 |
| 0.4354 | 6.2618 | 154000 | 0.4335 |
| 0.4364 | 6.3025 | 155000 | 0.4335 |
| 0.436 | 6.3431 | 156000 | 0.4327 |
| 0.4365 | 6.3838 | 157000 | 0.4332 |
| 0.4368 | 6.4245 | 158000 | 0.4320 |
| 0.4363 | 6.4651 | 159000 | 0.4317 |
| 0.4367 | 6.5058 | 160000 | 0.4320 |
| 0.436 | 6.5464 | 161000 | 0.4316 |
| 0.4351 | 6.5871 | 162000 | 0.4317 |
| 0.436 | 6.6278 | 163000 | 0.4310 |
| 0.4334 | 6.6684 | 164000 | 0.4307 |
| 0.4348 | 6.7091 | 165000 | 0.4301 |
| 0.4357 | 6.7498 | 166000 | 0.4293 |
| 0.4327 | 6.7904 | 167000 | 0.4295 |
| 0.4348 | 6.8311 | 168000 | 0.4294 |
| 0.4323 | 6.8717 | 169000 | 0.4284 |
| 0.4334 | 6.9124 | 170000 | 0.4283 |
| 0.4317 | 6.9531 | 171000 | 0.4279 |
| 0.433 | 6.9937 | 172000 | 0.4284 |
| 0.4273 | 7.0344 | 173000 | 0.4279 |
| 0.4272 | 7.0750 | 174000 | 0.4275 |
| 0.4265 | 7.1157 | 175000 | 0.4269 |
| 0.4287 | 7.1564 | 176000 | 0.4268 |
| 0.4282 | 7.1970 | 177000 | 0.4264 |
| 0.4267 | 7.2377 | 178000 | 0.4267 |
| 0.4271 | 7.2783 | 179000 | 0.4256 |
| 0.4282 | 7.3190 | 180000 | 0.4254 |
| 0.427 | 7.3597 | 181000 | 0.4251 |
| 0.4262 | 7.4003 | 182000 | 0.4249 |
| 0.4272 | 7.4410 | 183000 | 0.4248 |
| 0.4271 | 7.4817 | 184000 | 0.4243 |
| 0.4261 | 7.5223 | 185000 | 0.4236 |
| 0.4273 | 7.5630 | 186000 | 0.4237 |
| 0.4262 | 7.6036 | 187000 | 0.4238 |
| 0.426 | 7.6443 | 188000 | 0.4232 |
| 0.4243 | 7.6850 | 189000 | 0.4226 |
| 0.4242 | 7.7256 | 190000 | 0.4219 |
| 0.427 | 7.7663 | 191000 | 0.4215 |
| 0.4236 | 7.8069 | 192000 | 0.4211 |
| 0.422 | 7.8476 | 193000 | 0.4211 |
| 0.4224 | 7.8883 | 194000 | 0.4204 |
| 0.4237 | 7.9289 | 195000 | 0.4201 |
| 0.424 | 7.9696 | 196000 | 0.4200 |
| 0.4161 | 8.0102 | 197000 | 0.4196 |
| 0.4172 | 8.0509 | 198000 | 0.4193 |
| 0.4165 | 8.0916 | 199000 | 0.4192 |
| 0.4151 | 8.1322 | 200000 | 0.4189 |
| 0.417 | 8.1729 | 201000 | 0.4184 |
| 0.4172 | 8.2136 | 202000 | 0.4182 |
| 0.4181 | 8.2542 | 203000 | 0.4180 |
| 0.4167 | 8.2949 | 204000 | 0.4170 |
| 0.4184 | 8.3355 | 205000 | 0.4168 |
| 0.4148 | 8.3762 | 206000 | 0.4164 |
| 0.4171 | 8.4169 | 207000 | 0.4157 |
| 0.417 | 8.4575 | 208000 | 0.4158 |
| 0.4174 | 8.4982 | 209000 | 0.4153 |
| 0.4159 | 8.5388 | 210000 | 0.4149 |
| 0.4141 | 8.5795 | 211000 | 0.4149 |
| 0.4141 | 8.6202 | 212000 | 0.4144 |
| 0.4121 | 8.6608 | 213000 | 0.4139 |
| 0.4134 | 8.7015 | 214000 | 0.4133 |
| 0.4126 | 8.7421 | 215000 | 0.4135 |
| 0.4141 | 8.7828 | 216000 | 0.4125 |
| 0.4126 | 8.8235 | 217000 | 0.4125 |
| 0.4117 | 8.8641 | 218000 | 0.4119 |
| 0.4114 | 8.9048 | 219000 | 0.4115 |
| 0.4102 | 8.9455 | 220000 | 0.4113 |
| 0.4123 | 8.9861 | 221000 | 0.4103 |
| 0.4045 | 9.0268 | 222000 | 0.4104 |
| 0.4039 | 9.0674 | 223000 | 0.4104 |
| 0.4042 | 9.1081 | 224000 | 0.4100 |
| 0.4063 | 9.1488 | 225000 | 0.4092 |
| 0.4045 | 9.1894 | 226000 | 0.4091 |
| 0.4052 | 9.2301 | 227000 | 0.4086 |
| 0.4041 | 9.2707 | 228000 | 0.4082 |
| 0.4042 | 9.3114 | 229000 | 0.4077 |
| 0.403 | 9.3521 | 230000 | 0.4077 |
| 0.4047 | 9.3927 | 231000 | 0.4070 |
| 0.4014 | 9.4334 | 232000 | 0.4067 |
| 0.4032 | 9.4740 | 233000 | 0.4062 |
| 0.4018 | 9.5147 | 234000 | 0.4059 |
| 0.4015 | 9.5554 | 235000 | 0.4054 |
| 0.4005 | 9.5960 | 236000 | 0.4050 |
| 0.4016 | 9.6367 | 237000 | 0.4049 |
| 0.4012 | 9.6774 | 238000 | 0.4043 |
| 0.4014 | 9.7180 | 239000 | 0.4040 |
| 0.3995 | 9.7587 | 240000 | 0.4037 |
| 0.398 | 9.7993 | 241000 | 0.4035 |
| 0.3979 | 9.8400 | 242000 | 0.4032 |
| 0.3965 | 9.8807 | 243000 | 0.4029 |
| 0.3983 | 9.9213 | 244000 | 0.4026 |
| 0.3997 | 9.9620 | 245000 | 0.4025 |
### Framework Versions
- **Transformers:** 4.43.3
- **PyTorch:** 2.4.0+cu121
- **Datasets:** 2.20.0
- **Tokenizers:** 0.19.1
## Acknowledgements
We acknowledge and thank the authors of the SAFE framework for their valuable contribution to the field of molecular design.
## References
```bibtex
@inproceedings{
lombard2024molecular,
title={Molecular Generation with State Space Sequence Models},
author={Anri Lombard and Shane Acton and Ulrich Armel Mbou Sob and Jan Buys},
booktitle={NeurIPS 2024 Workshop on AI for New Drug Modalities},
year={2024},
url={https://openreview.net/forum?id=1ib5oyTQIb}
}
```
```bibtex
@article{noutahi2024gotta,
title={Gotta be SAFE: a new framework for molecular design},
author={Noutahi, Emmanuel and Gabellini, Cristian and Craig, Michael and Lim, Jonathan SC and Tossou, Prudencio},
journal={Digital Discovery},
volume={3},
number={4},
pages={796--804},
year={2024},
publisher={Royal Society of Chemistry}
}
```
|