Lunar Model with score > 250 on average
Browse files- README.md +37 -0
- best-model.zip +3 -0
- best-model/_stable_baselines3_version +1 -0
- best-model/data +99 -0
- best-model/policy.optimizer.pth +3 -0
- best-model/policy.pth +3 -0
- best-model/pytorch_variables.pth +3 -0
- best-model/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.21 +/- 21.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
best-model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd33285fc9ca26f87ba3b566c84c9b81e7a708c184ee3d33c74242c7c58539d5
|
3 |
+
size 147734
|
best-model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
best-model/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x2ece8fc40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x2ece8fce0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x2ece8fd80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x2ece8fe20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x2ece8fec0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x2ece8ff60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x2ece98040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x2ece980e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x2ece98180>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x2ece98220>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x2ece982c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x2ece98360>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x2ecd04140>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 4300000,
|
25 |
+
"_total_timesteps": 5000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1709454170282017000,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGa2RTw982I/+lwQPQDf9L4Sk5C8I/LxOwAAAAAAAAAAs4HyPTj2gj6O+a2+hGuTvhcdQ71PLTG+AAAAAAAAAAAa1iq9e/qEugKDF7cEKy+yt7BPu6IKMTYAAIA/AACAPwDYMTzDHS26tuxlPCBvHrMSPZ27uuZ1swAAgD8AAIA/ZkLjPJiTlz6OL6o9FObNvt+V1T1/U0s9AAAAAAAAAAAzG307w4UqOzy5Sr4lhV2+2ye1vWWmOT8AAIA/AAAAALOSeb7zGy4/3qatPD8e1L7c3qC+DpIWPgAAAAAAAAAAwCskPjyKWz8ad1w9vA77vv4aQj7CnB+9AAAAAAAAAACmkjE+Qug6PxCRND1h3wK/PCh6PnuDPLwAAAAAAAAAAGYkTz2pSgq8g8QgveIdFT2Sopm8FP8tPAAAgD8AAIA/mi2tPbgEiz46UTe+IyC5vv2gLTxuf169AAAAAAAAAACa3b877PPRuyIyhL0jwpA8XH4wPeIrdL0AAIA/AACAP5qjiD2hn789Msrivr1yn75yF4O+jAYMvQAAAAAAAAAAMyv4uwWx3buvHwI7KliVPLbePb3w/Xo9AACAPwAAgD8asS49ccojPmdlwz3HxNq+MTP5PVV3KD0AAAAAAAAAADOyhbxna8w+dd4fPoPt2L7x8qo9sOQuPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.1414784,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBfxJI1+AqMAWyUS8+MAXSUR0CYCg7jT8YRdX2UKGgGR0ByqYcp9ZzQaAdLx2gIR0CYCouSOinHdX2UKGgGR0BwFsJOWSlnaAdLymgIR0CYCpgM+eOGdX2UKGgGR0ByH6bmU4aQaAdLzWgIR0CYCufT1CgLdX2UKGgGR0BwLTM4cWCVaAdL02gIR0CYCvguyu6mdX2UKGgGR0Bxw9WQwK0EaAdL2WgIR0CYCyvfCQ9zdX2UKGgGR0BxwCnvUjLTaAdL92gIR0CYC0VyFPBSdX2UKGgGR0BxMTC0ngHeaAdLvmgIR0CYC2XlbNbDdX2UKGgGR0By2NOO801qaAdL62gIR0CYC5JOnEVGdX2UKGgGR0ByUrPrv9cbaAdLvmgIR0CYC6ep4rz5dX2UKGgGR0BymsdV/+bWaAdL8mgIR0CYDBPtUn5SdX2UKGgGR0Bz0aqxTsIFaAdL3GgIR0CYDF5ckdFOdX2UKGgGR0Bwnurp7kXDaAdL52gIR0CYDGafjCHidX2UKGgGR0BHmxN7BwdbaAdLkGgIR0CYDIXRgJC0dX2UKGgGR0BwPiMLncL0aAdL2WgIR0CYDIlvIfbLdX2UKGgGR0BlT7kGRmseaAdN6ANoCEdAmAyYHcDbJ3V9lChoBkdAc2j4VRDTjWgHS8JoCEdAmAyq0+kgwHV9lChoBkdAcwEamXPZ7GgHS/BoCEdAmA2iLAHminV9lChoBkdAc6cBEa2nbmgHS9ZoCEdAmA2qkEcKgXV9lChoBkdAc2QFHavicWgHS9FoCEdAmA3j/EOy3XV9lChoBkdAcwfKEFnqV2gHS+xoCEdAmA3rCaZx73V9lChoBkdAbzOvN/vv0GgHS89oCEdAmA37XpW3jXV9lChoBkdAcdv1f3N9pmgHS9JoCEdAmA4xl+Vkc3V9lChoBkdAcIJG+9Jz1mgHS9loCEdAmA5hgAp8W3V9lChoBkdAcnlaQV9F4WgHS8ZoCEdAmA7oQvpQlHV9lChoBkdAcSwtv4ubqmgHS8doCEdAmA8VvMr3CnV9lChoBkdAcQcjJ+2E02gHS8hoCEdAmA9N5UtI1HV9lChoBkdAcMD48lolEGgHS+toCEdAmA93gLqlg3V9lChoBkdAcEomO2iL22gHS+BoCEdAmA+RvWH1vnV9lChoBkdAcmDQFLWZqmgHS+loCEdAmA+fs/pt8HV9lChoBkdAcqrs9B8hLWgHTSUBaAhHQJgP8bVBlc11fZQoaAZHQHIMZUPxx1hoB0vRaAhHQJgQjnied091fZQoaAZHQHFvTa0x/NJoB0vPaAhHQJgQyloDgZV1fZQoaAZHQHF5osiB5HFoB0vkaAhHQJgQzsC1Z1V1fZQoaAZHQHGIAeRxLkFoB0vTaAhHQJgQ67wrlNl1fZQoaAZHQHEWRlxwQ19oB0vkaAhHQJgRFVghKUV1fZQoaAZHQHKLrjxTbWVoB0vPaAhHQJgRUPOIInl1fZQoaAZHQHD/U6HTI/9oB0vpaAhHQJgRehUR3/x1fZQoaAZHQHLr0hA4XGhoB0vBaAhHQJgRqlenhsJ1fZQoaAZHQHON2Q4jrzJoB0vOaAhHQJgSMZVGTcJ1fZQoaAZHQHKF3D3ueBhoB0vJaAhHQJgSRJ8OTaF1fZQoaAZHQHEycLa24NJoB0vxaAhHQJgSenBLwnZ1fZQoaAZHQHNnDzmOlwdoB0vraAhHQJgSzsUqQRx1fZQoaAZHQHE7F8PWhAZoB0vnaAhHQJgSzyZrpJR1fZQoaAZHQHKAYhdMTOBoB0vwaAhHQJgTSjCYTkB1fZQoaAZHQHONPLowEhdoB0vRaAhHQJgTvkGRmsh1fZQoaAZHQHLL5p35eqtoB0vqaAhHQJgT5FuvUz91fZQoaAZHQHFyZpi7TUloB0vSaAhHQJgT6O3lS0l1fZQoaAZHQHE/JSNwR5FoB0vtaAhHQJgULrHEMsp1fZQoaAZHQHE5CXt0FKVoB0veaAhHQJgUOXokiUx1fZQoaAZHQHHL0X531SRoB0vhaAhHQJgUea6STyJ1fZQoaAZHQHDjdfw7T2FoB0vkaAhHQJgUqZtvXK91fZQoaAZHQHGRI95hScdoB0vZaAhHQJgUsuf29L91fZQoaAZHQHIjVrVOKwZoB0vYaAhHQJgVPMNc4YJ1fZQoaAZHQHNWcXN1QqJoB0vGaAhHQJgVl2xIJ7d1fZQoaAZHQHEMxI8QqZtoB0v1aAhHQJgVnAKv3al1fZQoaAZHQHJsIIv8IiVoB0vuaAhHQJgVzuLJjlR1fZQoaAZHQHCYft2LYPJoB0v0aAhHQJgWPurp7kZ1fZQoaAZHQHA+iYG+sYFoB0vDaAhHQJgWeY3Ns311fZQoaAZHQG9aGsmv4dpoB0vqaAhHQJgWnVkMCtB1fZQoaAZHQHE0GPtD2J1oB0vQaAhHQJgWy1kUbkx1fZQoaAZHQHENNhAnlXBoB0vgaAhHQJgXBpyp71J1fZQoaAZHQG/OwdKdxyZoB0vPaAhHQJgXGbayrxR1fZQoaAZHQHOlvYjB2wFoB0vUaAhHQJgXIWWQfZF1fZQoaAZHQHNVCwbEP2BoB0vCaAhHQJgXLe0ojOd1fZQoaAZHQGhIMPrfLs9oB03oA2gIR0CYF1IV/MGHdX2UKGgGR0BvWQ77sOXmaAdL0mgIR0CYF4uuRs/IdX2UKGgGR0By8wUWVNYbaAdL92gIR0CYHYyQxN7CdX2UKGgGR0BzySYeDFqBaAdL52gIR0CYHef9P1tgdX2UKGgGR0AhSDlHSWqtaAdLn2gIR0CYHjaOgg5jdX2UKGgGR0BlC5+x4Y78aAdN6ANoCEdAmB5DCLuQZHV9lChoBkdAcdSRradtmGgHS+1oCEdAmB5YmTkhinV9lChoBkdAcipkQPI4l2gHS+5oCEdAmB5Y+8oQWnV9lChoBkdAcNSg6U7jk2gHS+NoCEdAmB5lSn+AE3V9lChoBkdAcEGSMtK7I2gHS91oCEdAmB7ccMmWt3V9lChoBkdAceTxKg7HQ2gHS7xoCEdAmB8FENOM2nV9lChoBkdActIHJ9y93GgHS/toCEdAmB8L2USqVHV9lChoBkdAcdMVS4vvjWgHS89oCEdAmB8qPfbblHV9lChoBkdAcMMcFQl8gWgHS71oCEdAmB84BeXzDnV9lChoBkdAcxfutwJgLWgHS/BoCEdAmB9TzErGznV9lChoBkdAcZiL9uP3jGgHS85oCEdAmB+TBl+VknV9lChoBkdAc0Xe1a4c3mgHS/doCEdAmB+dXgccVHV9lChoBkdAbuZfhMrVfGgHS/VoCEdAmB+nGn4wiHV9lChoBkdAcWu3YcvM82gHS9BoCEdAmB/5DVpblnV9lChoBkdAcJ9qN6w+uGgHS8xoCEdAmCB+4b0e2nV9lChoBkdAb0aF0PpY92gHS8toCEdAmCCOrU9ZBHV9lChoBkdAbS3oIOYplWgHS+JoCEdAmCC40Q9RrXV9lChoBkdAcqwRRMvh62gHS9toCEdAmCC/AXVLBnV9lChoBkdAcairftQbdmgHS/toCEdAmCDEvK2a2HV9lChoBkdAc6l//NqxkmgHS99oCEdAmCDUBbOeKHV9lChoBkdAcnz5EMLF42gHS9ZoCEdAmCFL5dnkDXV9lChoBkdAb1COn2qT82gHS95oCEdAmCFrjxTbWXV9lChoBkdAb7SoVEd/8WgHS8VoCEdAmCFvWtlqanV9lChoBkdAcnCXuE25x2gHS+9oCEdAmCFyyprDZXV9lChoBkdAcic7AtWdVmgHS9VoCEdAmCF86eXiSHV9lChoBkdAcZ2VwgkkbGgHS+doCEdAmCGb4N7SiXV9lChoBkdAcODaAWi1zGgHS+BoCEdAmCH17dBSk3V9lChoBkdAb/lVc2R7q2gHS99oCEdAmCH+gQHzH3V9lChoBkdActByR0U472gHS+NoCEdAmCITLns9jnV9lChoBkdAcoiYISlFdGgHS8ZoCEdAmCIgJ9iMHnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 1048,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVJAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 16,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVJAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
best-model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50c2eccd2884e1a9caf92c3153345910bb19e4a667dd900e95d3e08c19c33b76
|
3 |
+
size 87978
|
best-model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d25ad33782bff92a1516ccdb05557c68d6be0d1502f34a1ba904cab459c3a6e
|
3 |
+
size 43634
|
best-model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebdad4b9cfe9cd22a3abadb5623bf7bb1f6eb2e408740245eb3f2044b0adc018
|
3 |
+
size 864
|
best-model/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-14.3.1-arm64-arm-64bit Darwin Kernel Version 23.3.0: Wed Dec 20 21:30:44 PST 2023; root:xnu-10002.81.5~7/RELEASE_ARM64_T6000
|
2 |
+
- Python: 3.11.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.0
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x2ece8fc40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x2ece8fce0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x2ece8fd80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x2ece8fe20>", "_build": "<function ActorCriticPolicy._build at 0x2ece8fec0>", "forward": "<function ActorCriticPolicy.forward at 0x2ece8ff60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x2ece98040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x2ece980e0>", "_predict": "<function ActorCriticPolicy._predict at 0x2ece98180>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x2ece98220>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x2ece982c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x2ece98360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x2ecd04140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4300000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709454170282017000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGa2RTw982I/+lwQPQDf9L4Sk5C8I/LxOwAAAAAAAAAAs4HyPTj2gj6O+a2+hGuTvhcdQ71PLTG+AAAAAAAAAAAa1iq9e/qEugKDF7cEKy+yt7BPu6IKMTYAAIA/AACAPwDYMTzDHS26tuxlPCBvHrMSPZ27uuZ1swAAgD8AAIA/ZkLjPJiTlz6OL6o9FObNvt+V1T1/U0s9AAAAAAAAAAAzG307w4UqOzy5Sr4lhV2+2ye1vWWmOT8AAIA/AAAAALOSeb7zGy4/3qatPD8e1L7c3qC+DpIWPgAAAAAAAAAAwCskPjyKWz8ad1w9vA77vv4aQj7CnB+9AAAAAAAAAACmkjE+Qug6PxCRND1h3wK/PCh6PnuDPLwAAAAAAAAAAGYkTz2pSgq8g8QgveIdFT2Sopm8FP8tPAAAgD8AAIA/mi2tPbgEiz46UTe+IyC5vv2gLTxuf169AAAAAAAAAACa3b877PPRuyIyhL0jwpA8XH4wPeIrdL0AAIA/AACAP5qjiD2hn789Msrivr1yn75yF4O+jAYMvQAAAAAAAAAAMyv4uwWx3buvHwI7KliVPLbePb3w/Xo9AACAPwAAgD8asS49ccojPmdlwz3HxNq+MTP5PVV3KD0AAAAAAAAAADOyhbxna8w+dd4fPoPt2L7x8qo9sOQuPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.1414784, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBfxJI1+AqMAWyUS8+MAXSUR0CYCg7jT8YRdX2UKGgGR0ByqYcp9ZzQaAdLx2gIR0CYCouSOinHdX2UKGgGR0BwFsJOWSlnaAdLymgIR0CYCpgM+eOGdX2UKGgGR0ByH6bmU4aQaAdLzWgIR0CYCufT1CgLdX2UKGgGR0BwLTM4cWCVaAdL02gIR0CYCvguyu6mdX2UKGgGR0Bxw9WQwK0EaAdL2WgIR0CYCyvfCQ9zdX2UKGgGR0BxwCnvUjLTaAdL92gIR0CYC0VyFPBSdX2UKGgGR0BxMTC0ngHeaAdLvmgIR0CYC2XlbNbDdX2UKGgGR0By2NOO801qaAdL62gIR0CYC5JOnEVGdX2UKGgGR0ByUrPrv9cbaAdLvmgIR0CYC6ep4rz5dX2UKGgGR0BymsdV/+bWaAdL8mgIR0CYDBPtUn5SdX2UKGgGR0Bz0aqxTsIFaAdL3GgIR0CYDF5ckdFOdX2UKGgGR0Bwnurp7kXDaAdL52gIR0CYDGafjCHidX2UKGgGR0BHmxN7BwdbaAdLkGgIR0CYDIXRgJC0dX2UKGgGR0BwPiMLncL0aAdL2WgIR0CYDIlvIfbLdX2UKGgGR0BlT7kGRmseaAdN6ANoCEdAmAyYHcDbJ3V9lChoBkdAc2j4VRDTjWgHS8JoCEdAmAyq0+kgwHV9lChoBkdAcwEamXPZ7GgHS/BoCEdAmA2iLAHminV9lChoBkdAc6cBEa2nbmgHS9ZoCEdAmA2qkEcKgXV9lChoBkdAc2QFHavicWgHS9FoCEdAmA3j/EOy3XV9lChoBkdAcwfKEFnqV2gHS+xoCEdAmA3rCaZx73V9lChoBkdAbzOvN/vv0GgHS89oCEdAmA37XpW3jXV9lChoBkdAcdv1f3N9pmgHS9JoCEdAmA4xl+Vkc3V9lChoBkdAcIJG+9Jz1mgHS9loCEdAmA5hgAp8W3V9lChoBkdAcnlaQV9F4WgHS8ZoCEdAmA7oQvpQlHV9lChoBkdAcSwtv4ubqmgHS8doCEdAmA8VvMr3CnV9lChoBkdAcQcjJ+2E02gHS8hoCEdAmA9N5UtI1HV9lChoBkdAcMD48lolEGgHS+toCEdAmA93gLqlg3V9lChoBkdAcEomO2iL22gHS+BoCEdAmA+RvWH1vnV9lChoBkdAcmDQFLWZqmgHS+loCEdAmA+fs/pt8HV9lChoBkdAcqrs9B8hLWgHTSUBaAhHQJgP8bVBlc11fZQoaAZHQHIMZUPxx1hoB0vRaAhHQJgQjnied091fZQoaAZHQHFvTa0x/NJoB0vPaAhHQJgQyloDgZV1fZQoaAZHQHF5osiB5HFoB0vkaAhHQJgQzsC1Z1V1fZQoaAZHQHGIAeRxLkFoB0vTaAhHQJgQ67wrlNl1fZQoaAZHQHEWRlxwQ19oB0vkaAhHQJgRFVghKUV1fZQoaAZHQHKLrjxTbWVoB0vPaAhHQJgRUPOIInl1fZQoaAZHQHD/U6HTI/9oB0vpaAhHQJgRehUR3/x1fZQoaAZHQHLr0hA4XGhoB0vBaAhHQJgRqlenhsJ1fZQoaAZHQHON2Q4jrzJoB0vOaAhHQJgSMZVGTcJ1fZQoaAZHQHKF3D3ueBhoB0vJaAhHQJgSRJ8OTaF1fZQoaAZHQHEycLa24NJoB0vxaAhHQJgSenBLwnZ1fZQoaAZHQHNnDzmOlwdoB0vraAhHQJgSzsUqQRx1fZQoaAZHQHE7F8PWhAZoB0vnaAhHQJgSzyZrpJR1fZQoaAZHQHKAYhdMTOBoB0vwaAhHQJgTSjCYTkB1fZQoaAZHQHONPLowEhdoB0vRaAhHQJgTvkGRmsh1fZQoaAZHQHLL5p35eqtoB0vqaAhHQJgT5FuvUz91fZQoaAZHQHFyZpi7TUloB0vSaAhHQJgT6O3lS0l1fZQoaAZHQHE/JSNwR5FoB0vtaAhHQJgULrHEMsp1fZQoaAZHQHE5CXt0FKVoB0veaAhHQJgUOXokiUx1fZQoaAZHQHHL0X531SRoB0vhaAhHQJgUea6STyJ1fZQoaAZHQHDjdfw7T2FoB0vkaAhHQJgUqZtvXK91fZQoaAZHQHGRI95hScdoB0vZaAhHQJgUsuf29L91fZQoaAZHQHIjVrVOKwZoB0vYaAhHQJgVPMNc4YJ1fZQoaAZHQHNWcXN1QqJoB0vGaAhHQJgVl2xIJ7d1fZQoaAZHQHEMxI8QqZtoB0v1aAhHQJgVnAKv3al1fZQoaAZHQHJsIIv8IiVoB0vuaAhHQJgVzuLJjlR1fZQoaAZHQHCYft2LYPJoB0v0aAhHQJgWPurp7kZ1fZQoaAZHQHA+iYG+sYFoB0vDaAhHQJgWeY3Ns311fZQoaAZHQG9aGsmv4dpoB0vqaAhHQJgWnVkMCtB1fZQoaAZHQHE0GPtD2J1oB0vQaAhHQJgWy1kUbkx1fZQoaAZHQHENNhAnlXBoB0vgaAhHQJgXBpyp71J1fZQoaAZHQG/OwdKdxyZoB0vPaAhHQJgXGbayrxR1fZQoaAZHQHOlvYjB2wFoB0vUaAhHQJgXIWWQfZF1fZQoaAZHQHNVCwbEP2BoB0vCaAhHQJgXLe0ojOd1fZQoaAZHQGhIMPrfLs9oB03oA2gIR0CYF1IV/MGHdX2UKGgGR0BvWQ77sOXmaAdL0mgIR0CYF4uuRs/IdX2UKGgGR0By8wUWVNYbaAdL92gIR0CYHYyQxN7CdX2UKGgGR0BzySYeDFqBaAdL52gIR0CYHef9P1tgdX2UKGgGR0AhSDlHSWqtaAdLn2gIR0CYHjaOgg5jdX2UKGgGR0BlC5+x4Y78aAdN6ANoCEdAmB5DCLuQZHV9lChoBkdAcdSRradtmGgHS+1oCEdAmB5YmTkhinV9lChoBkdAcipkQPI4l2gHS+5oCEdAmB5Y+8oQWnV9lChoBkdAcNSg6U7jk2gHS+NoCEdAmB5lSn+AE3V9lChoBkdAcEGSMtK7I2gHS91oCEdAmB7ccMmWt3V9lChoBkdAceTxKg7HQ2gHS7xoCEdAmB8FENOM2nV9lChoBkdActIHJ9y93GgHS/toCEdAmB8L2USqVHV9lChoBkdAcdMVS4vvjWgHS89oCEdAmB8qPfbblHV9lChoBkdAcMMcFQl8gWgHS71oCEdAmB84BeXzDnV9lChoBkdAcxfutwJgLWgHS/BoCEdAmB9TzErGznV9lChoBkdAcZiL9uP3jGgHS85oCEdAmB+TBl+VknV9lChoBkdAc0Xe1a4c3mgHS/doCEdAmB+dXgccVHV9lChoBkdAbuZfhMrVfGgHS/VoCEdAmB+nGn4wiHV9lChoBkdAcWu3YcvM82gHS9BoCEdAmB/5DVpblnV9lChoBkdAcJ9qN6w+uGgHS8xoCEdAmCB+4b0e2nV9lChoBkdAb0aF0PpY92gHS8toCEdAmCCOrU9ZBHV9lChoBkdAbS3oIOYplWgHS+JoCEdAmCC40Q9RrXV9lChoBkdAcqwRRMvh62gHS9toCEdAmCC/AXVLBnV9lChoBkdAcairftQbdmgHS/toCEdAmCDEvK2a2HV9lChoBkdAc6l//NqxkmgHS99oCEdAmCDUBbOeKHV9lChoBkdAcnz5EMLF42gHS9ZoCEdAmCFL5dnkDXV9lChoBkdAb1COn2qT82gHS95oCEdAmCFrjxTbWXV9lChoBkdAb7SoVEd/8WgHS8VoCEdAmCFvWtlqanV9lChoBkdAcnCXuE25x2gHS+9oCEdAmCFyyprDZXV9lChoBkdAcic7AtWdVmgHS9VoCEdAmCF86eXiSHV9lChoBkdAcZ2VwgkkbGgHS+doCEdAmCGb4N7SiXV9lChoBkdAcODaAWi1zGgHS+BoCEdAmCH17dBSk3V9lChoBkdAb/lVc2R7q2gHS99oCEdAmCH+gQHzH3V9lChoBkdActByR0U472gHS+NoCEdAmCITLns9jnV9lChoBkdAcoiYISlFdGgHS8ZoCEdAmCIgJ9iMHnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1048, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVJAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHEvTGlicmFyeS9GcmFtZXdvcmtzL1B5dGhvbi5mcmFtZXdvcmsvVmVyc2lvbnMvMy4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "macOS-14.3.1-arm64-arm-64bit Darwin Kernel Version 23.3.0: Wed Dec 20 21:30:44 PST 2023; root:xnu-10002.81.5~7/RELEASE_ARM64_T6000", "Python": "3.11.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.0", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
ADDED
Binary file (164 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.2095657171474, "std_reward": 21.30190789325244, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-03T11:11:43.264415"}
|