ankush-003 commited on
Commit
9bcc7ee
·
1 Parent(s): 8d8e14e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -22
README.md CHANGED
@@ -17,7 +17,7 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.2163
21
  - Accuracy: 0.925
22
 
23
  ## Model description
@@ -43,32 +43,52 @@ The following hyperparameters were used during training:
43
  - seed: 42
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
- - num_epochs: 20
47
 
48
  ### Training results
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
- | No log | 1.0 | 40 | 0.5778 | 0.75 |
53
- | No log | 2.0 | 80 | 0.2385 | 0.9 |
54
- | No log | 3.0 | 120 | 0.2347 | 0.925 |
55
- | No log | 4.0 | 160 | 0.2441 | 0.95 |
56
- | No log | 5.0 | 200 | 0.3622 | 0.875 |
57
- | No log | 6.0 | 240 | 0.3678 | 0.9 |
58
- | No log | 7.0 | 280 | 0.4873 | 0.8 |
59
- | No log | 8.0 | 320 | 0.2847 | 0.95 |
60
- | No log | 9.0 | 360 | 0.3917 | 0.9 |
61
- | No log | 10.0 | 400 | 0.4760 | 0.9 |
62
- | No log | 11.0 | 440 | 0.5594 | 0.875 |
63
- | No log | 12.0 | 480 | 0.4868 | 0.9 |
64
- | 0.3077 | 13.0 | 520 | 0.3206 | 0.9 |
65
- | 0.3077 | 14.0 | 560 | 0.2144 | 0.9 |
66
- | 0.3077 | 15.0 | 600 | 0.2380 | 0.925 |
67
- | 0.3077 | 16.0 | 640 | 0.2451 | 0.925 |
68
- | 0.3077 | 17.0 | 680 | 0.2343 | 0.925 |
69
- | 0.3077 | 18.0 | 720 | 0.2093 | 0.9 |
70
- | 0.3077 | 19.0 | 760 | 0.2168 | 0.925 |
71
- | 0.3077 | 20.0 | 800 | 0.2163 | 0.925 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.3487
21
  - Accuracy: 0.925
22
 
23
  ## Model description
 
43
  - seed: 42
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
+ - num_epochs: 40
47
 
48
  ### Training results
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | No log | 1.0 | 40 | 0.5340 | 0.725 |
53
+ | No log | 2.0 | 80 | 0.3454 | 0.825 |
54
+ | No log | 3.0 | 120 | 0.2534 | 0.925 |
55
+ | No log | 4.0 | 160 | 0.2940 | 0.925 |
56
+ | No log | 5.0 | 200 | 0.2071 | 0.925 |
57
+ | No log | 6.0 | 240 | 0.2847 | 0.9 |
58
+ | No log | 7.0 | 280 | 0.6074 | 0.8 |
59
+ | No log | 8.0 | 320 | 0.3713 | 0.9 |
60
+ | No log | 9.0 | 360 | 0.3344 | 0.9 |
61
+ | No log | 10.0 | 400 | 0.2685 | 0.95 |
62
+ | No log | 11.0 | 440 | 0.4511 | 0.9 |
63
+ | No log | 12.0 | 480 | 0.3239 | 0.925 |
64
+ | 0.2791 | 13.0 | 520 | 0.2473 | 0.95 |
65
+ | 0.2791 | 14.0 | 560 | 0.2308 | 0.95 |
66
+ | 0.2791 | 15.0 | 600 | 0.4361 | 0.925 |
67
+ | 0.2791 | 16.0 | 640 | 0.3220 | 0.9 |
68
+ | 0.2791 | 17.0 | 680 | 0.2351 | 0.95 |
69
+ | 0.2791 | 18.0 | 720 | 0.2369 | 0.925 |
70
+ | 0.2791 | 19.0 | 760 | 0.2604 | 0.925 |
71
+ | 0.2791 | 20.0 | 800 | 0.4832 | 0.875 |
72
+ | 0.2791 | 21.0 | 840 | 0.3722 | 0.925 |
73
+ | 0.2791 | 22.0 | 880 | 0.3575 | 0.925 |
74
+ | 0.2791 | 23.0 | 920 | 0.3696 | 0.9 |
75
+ | 0.2791 | 24.0 | 960 | 0.4021 | 0.9 |
76
+ | 0.0855 | 25.0 | 1000 | 0.4134 | 0.9 |
77
+ | 0.0855 | 26.0 | 1040 | 0.3858 | 0.9 |
78
+ | 0.0855 | 27.0 | 1080 | 0.3609 | 0.925 |
79
+ | 0.0855 | 28.0 | 1120 | 0.3435 | 0.925 |
80
+ | 0.0855 | 29.0 | 1160 | 0.2918 | 0.925 |
81
+ | 0.0855 | 30.0 | 1200 | 0.3282 | 0.925 |
82
+ | 0.0855 | 31.0 | 1240 | 0.2552 | 0.925 |
83
+ | 0.0855 | 32.0 | 1280 | 0.3052 | 0.9 |
84
+ | 0.0855 | 33.0 | 1320 | 0.3770 | 0.9 |
85
+ | 0.0855 | 34.0 | 1360 | 0.3040 | 0.9 |
86
+ | 0.0855 | 35.0 | 1400 | 0.3231 | 0.925 |
87
+ | 0.0855 | 36.0 | 1440 | 0.3503 | 0.925 |
88
+ | 0.0855 | 37.0 | 1480 | 0.3458 | 0.925 |
89
+ | 0.0462 | 38.0 | 1520 | 0.3553 | 0.925 |
90
+ | 0.0462 | 39.0 | 1560 | 0.3489 | 0.925 |
91
+ | 0.0462 | 40.0 | 1600 | 0.3487 | 0.925 |
92
 
93
 
94
  ### Framework versions