ankush-003
commited on
Commit
·
9bcc7ee
1
Parent(s):
8d8e14e
update model card README.md
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
- Accuracy: 0.925
|
22 |
|
23 |
## Model description
|
@@ -43,32 +43,52 @@ The following hyperparameters were used during training:
|
|
43 |
- seed: 42
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
-
- num_epochs:
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
-
| No log | 1.0 | 40 | 0.
|
53 |
-
| No log | 2.0 | 80 | 0.
|
54 |
-
| No log | 3.0 | 120 | 0.
|
55 |
-
| No log | 4.0 | 160 | 0.
|
56 |
-
| No log | 5.0 | 200 | 0.
|
57 |
-
| No log | 6.0 | 240 | 0.
|
58 |
-
| No log | 7.0 | 280 | 0.
|
59 |
-
| No log | 8.0 | 320 | 0.
|
60 |
-
| No log | 9.0 | 360 | 0.
|
61 |
-
| No log | 10.0 | 400 | 0.
|
62 |
-
| No log | 11.0 | 440 | 0.
|
63 |
-
| No log | 12.0 | 480 | 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3487
|
21 |
- Accuracy: 0.925
|
22 |
|
23 |
## Model description
|
|
|
43 |
- seed: 42
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 40
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| No log | 1.0 | 40 | 0.5340 | 0.725 |
|
53 |
+
| No log | 2.0 | 80 | 0.3454 | 0.825 |
|
54 |
+
| No log | 3.0 | 120 | 0.2534 | 0.925 |
|
55 |
+
| No log | 4.0 | 160 | 0.2940 | 0.925 |
|
56 |
+
| No log | 5.0 | 200 | 0.2071 | 0.925 |
|
57 |
+
| No log | 6.0 | 240 | 0.2847 | 0.9 |
|
58 |
+
| No log | 7.0 | 280 | 0.6074 | 0.8 |
|
59 |
+
| No log | 8.0 | 320 | 0.3713 | 0.9 |
|
60 |
+
| No log | 9.0 | 360 | 0.3344 | 0.9 |
|
61 |
+
| No log | 10.0 | 400 | 0.2685 | 0.95 |
|
62 |
+
| No log | 11.0 | 440 | 0.4511 | 0.9 |
|
63 |
+
| No log | 12.0 | 480 | 0.3239 | 0.925 |
|
64 |
+
| 0.2791 | 13.0 | 520 | 0.2473 | 0.95 |
|
65 |
+
| 0.2791 | 14.0 | 560 | 0.2308 | 0.95 |
|
66 |
+
| 0.2791 | 15.0 | 600 | 0.4361 | 0.925 |
|
67 |
+
| 0.2791 | 16.0 | 640 | 0.3220 | 0.9 |
|
68 |
+
| 0.2791 | 17.0 | 680 | 0.2351 | 0.95 |
|
69 |
+
| 0.2791 | 18.0 | 720 | 0.2369 | 0.925 |
|
70 |
+
| 0.2791 | 19.0 | 760 | 0.2604 | 0.925 |
|
71 |
+
| 0.2791 | 20.0 | 800 | 0.4832 | 0.875 |
|
72 |
+
| 0.2791 | 21.0 | 840 | 0.3722 | 0.925 |
|
73 |
+
| 0.2791 | 22.0 | 880 | 0.3575 | 0.925 |
|
74 |
+
| 0.2791 | 23.0 | 920 | 0.3696 | 0.9 |
|
75 |
+
| 0.2791 | 24.0 | 960 | 0.4021 | 0.9 |
|
76 |
+
| 0.0855 | 25.0 | 1000 | 0.4134 | 0.9 |
|
77 |
+
| 0.0855 | 26.0 | 1040 | 0.3858 | 0.9 |
|
78 |
+
| 0.0855 | 27.0 | 1080 | 0.3609 | 0.925 |
|
79 |
+
| 0.0855 | 28.0 | 1120 | 0.3435 | 0.925 |
|
80 |
+
| 0.0855 | 29.0 | 1160 | 0.2918 | 0.925 |
|
81 |
+
| 0.0855 | 30.0 | 1200 | 0.3282 | 0.925 |
|
82 |
+
| 0.0855 | 31.0 | 1240 | 0.2552 | 0.925 |
|
83 |
+
| 0.0855 | 32.0 | 1280 | 0.3052 | 0.9 |
|
84 |
+
| 0.0855 | 33.0 | 1320 | 0.3770 | 0.9 |
|
85 |
+
| 0.0855 | 34.0 | 1360 | 0.3040 | 0.9 |
|
86 |
+
| 0.0855 | 35.0 | 1400 | 0.3231 | 0.925 |
|
87 |
+
| 0.0855 | 36.0 | 1440 | 0.3503 | 0.925 |
|
88 |
+
| 0.0855 | 37.0 | 1480 | 0.3458 | 0.925 |
|
89 |
+
| 0.0462 | 38.0 | 1520 | 0.3553 | 0.925 |
|
90 |
+
| 0.0462 | 39.0 | 1560 | 0.3489 | 0.925 |
|
91 |
+
| 0.0462 | 40.0 | 1600 | 0.3487 | 0.925 |
|
92 |
|
93 |
|
94 |
### Framework versions
|