File size: 1,841 Bytes
3cd73e7 7eeb042 3cd73e7 7eeb042 3cd73e7 7eeb042 087c47c 7eeb042 3cd73e7 087c47c 3cd73e7 2caa23a 3cd73e7 087c47c 3cd73e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- nyu-mll/glue
metrics:
- accuracy
model-index:
- name: albert-large-v2-finetuned-rte
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
args: rte
metrics:
- type: accuracy
value: 0.5487364620938628
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-large-v2-finetuned-rte
This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6827
- Accuracy: 0.5487
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 18 | 0.6954 | 0.5271 |
| No log | 2.0 | 36 | 0.6860 | 0.5379 |
| No log | 3.0 | 54 | 0.6827 | 0.5487 |
| No log | 4.0 | 72 | 0.7179 | 0.5235 |
| No log | 5.0 | 90 | 0.7504 | 0.5379 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|