devancao
model release
5d125d1
# Copyright 2024 AniMemory Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from safetensors.torch import load_file
from transformers.models.t5.configuration_t5 import T5Config
from transformers.models.t5.modeling_t5 import T5Stack
class AniMemoryT5(torch.nn.Module):
def __init__(self, config: T5Config, embed_tokens=None):
super().__init__()
self.encoder = T5Stack(config, embed_tokens)
self.embed_tokens_encoder = torch.nn.Embedding(250002, 4096, padding_idx=1)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path,
subfolder="",
embed_tokens=None,
emb_name="weights.safetensors",
torch_dtype=torch.float16,
):
cls.dtype = torch_dtype
config = T5Stack.config_class.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder
)
model = cls(config=config, embed_tokens=embed_tokens)
model.encoder = T5Stack.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder
)
embed_tokens_encoder_path = load_file(
os.path.join(pretrained_model_name_or_path, subfolder, emb_name)
)
model.embed_tokens_encoder.load_state_dict(embed_tokens_encoder_path)
model.encoder.to(torch_dtype)
model.embed_tokens_encoder.to(torch_dtype)
return model
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
super(AniMemoryT5, self).to(*args, **kwargs)
self.dtype = dtype if dtype is not None else self.dtype
self.device = device if device is not None else self.device
return self
def make_attn_mask(self, attn_mask):
seq_len = attn_mask.shape[1]
query = attn_mask.unsqueeze(1).float()
attn_mask = (
query.repeat([1, seq_len, 1]).unsqueeze(1).repeat([1, self.num_head, 1, 1])
)
attn_mask = attn_mask.view([-1, seq_len, seq_len])
return attn_mask
def forward(self, text, attention_mask):
embeddings = self.embed_tokens_encoder(text)
encoder_outputs = self.encoder(
inputs_embeds=embeddings,
attention_mask=attention_mask,
output_hidden_states=True,
)
hidden_states = encoder_outputs.hidden_states[-2]
hidden_states = self.encoder.final_layer_norm(hidden_states)
return hidden_states, hidden_states