AniMemory-alpha-dpo / vae /modeling_movq.py
devancao
model release
5d125d1
raw
history blame
17.2 kB
# Copyright 2024 Kandinsky 3.0 Model Team, AniMemory Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from types import SimpleNamespace
import torch
import torch.nn as nn
from packaging import version
from safetensors.torch import load_file
from diffusers.utils.accelerate_utils import apply_forward_hook
def nonlinearity(x):
return x * torch.sigmoid(x)
class SpatialNorm(nn.Module):
def __init__(
self,
f_channels,
zq_channels=None,
norm_layer=nn.GroupNorm,
freeze_norm_layer=False,
add_conv=False,
**norm_layer_params,
):
super().__init__()
self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params)
if zq_channels is not None:
if freeze_norm_layer:
for p in self.norm_layer.parameters:
p.requires_grad = False
self.add_conv = add_conv
if self.add_conv:
self.conv = nn.Conv2d(
zq_channels, zq_channels, kernel_size=3, stride=1, padding=1
)
self.conv_y = nn.Conv2d(
zq_channels, f_channels, kernel_size=1, stride=1, padding=0
)
self.conv_b = nn.Conv2d(
zq_channels, f_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, f, zq=None):
norm_f = self.norm_layer(f)
if zq is not None:
f_size = f.shape[-2:]
if (
version.parse(torch.__version__) < version.parse("2.1")
and zq.dtype == torch.bfloat16
):
zq = zq.to(dtype=torch.float32)
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
zq = zq.to(dtype=torch.bfloat16)
else:
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
if self.add_conv:
zq = self.conv(zq)
norm_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
return norm_f
def Normalize(in_channels, zq_ch=None, add_conv=None):
return SpatialNorm(
in_channels,
zq_ch,
norm_layer=nn.GroupNorm,
freeze_norm_layer=False,
add_conv=add_conv,
num_groups=32,
eps=1e-6,
affine=True,
)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
if (
version.parse(torch.__version__) < version.parse("2.1")
and x.dtype == torch.bfloat16
):
x = x.to(dtype=torch.float32)
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = x.to(dtype=torch.bfloat16)
else:
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=2, padding=0
)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(
self,
*,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout,
temb_channels=512,
zq_ch=None,
add_conv=False,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv)
self.conv1 = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
else:
self.nin_shortcut = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x, temb, zq=None):
h = x
h = self.norm1(h, zq)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
h = self.norm2(h, zq)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
def __init__(self, in_channels, zq_ch=None, add_conv=False):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x, zq=None):
h_ = x
h_ = self.norm(h_, zq)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1)
k = k.reshape(b, c, h * w)
w_ = torch.bmm(q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x + h_
class Encoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
double_z=True,
**ignore_kwargs,
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = torch.nn.Conv2d(
in_channels, self.ch, kernel_size=3, stride=1, padding=1
)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, x):
temb = None
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
give_pre_end=False,
zq_ch=None,
add_conv=False,
**ignorekwargs,
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = torch.nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
zq_ch=zq_ch,
add_conv=add_conv,
)
self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv)
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
zq_ch=zq_ch,
add_conv=add_conv,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
zq_ch=zq_ch,
add_conv=add_conv,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up)
# end
self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv)
self.conv_out = torch.nn.Conv2d(
block_in, out_ch, kernel_size=3, stride=1, padding=1
)
def forward(self, z, zq):
self.last_z_shape = z.shape
temb = None
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, temb, zq)
h = self.mid.attn_1(h, zq)
h = self.mid.block_2(h, temb, zq)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb, zq)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h, zq)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h, zq)
h = nonlinearity(h)
h = self.conv_out(h)
return h
# Modified from MoVQ in https://github.com/ai-forever/Kandinsky-3/blob/main/kandinsky3/movq.py
class MoVQ(nn.Module):
def __init__(self, generator_params: dict):
super().__init__()
z_channels = generator_params["z_channels"]
self.config = SimpleNamespace(**generator_params)
self.encoder = Encoder(**generator_params)
self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
self.decoder = Decoder(zq_ch=z_channels, **generator_params)
self.dtype = None
self.device = None
@staticmethod
def get_model_config(pretrained_model_name_or_path, subfolder):
config_path = os.path.join(
pretrained_model_name_or_path, subfolder, "config.json"
)
assert os.path.exists(config_path), "config file not exists."
with open(config_path, "r") as f:
config = json.loads(f.read())
return config
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path,
subfolder="",
torch_dtype=torch.float32,
):
config = cls.get_model_config(pretrained_model_name_or_path, subfolder)
model = cls(generator_params=config)
ckpt_path = os.path.join(
pretrained_model_name_or_path, subfolder, "movq_model.safetensors"
)
assert os.path.exists(
ckpt_path
), f"ckpt path not exists, please check {ckpt_path}"
assert torch_dtype != torch.float16, "torch_dtype doesn't support fp16"
ckpt_weight = load_file(ckpt_path)
model.load_state_dict(ckpt_weight, strict=True)
model.to(dtype=torch_dtype)
return model
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
super(MoVQ, self).to(*args, **kwargs)
self.dtype = dtype if dtype is not None else self.dtype
self.device = device if device is not None else self.device
return self
@torch.no_grad()
@apply_forward_hook
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
@torch.no_grad()
@apply_forward_hook
def decode(self, quant):
decoder_input = self.post_quant_conv(quant)
decoded = self.decoder(decoder_input, quant)
return decoded