File size: 4,442 Bytes
5d125d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copyright 2024 AniMemory Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import torch
from safetensors.torch import load_file
from transformers import CLIPTextConfig, CLIPTextModelWithProjection


class AniMemoryAltCLip(torch.nn.Module):
    def __init__(self, config: CLIPTextConfig):
        super().__init__()
        self.model_hf = CLIPTextModelWithProjection(config)
        self.linear_proj = torch.nn.Linear(in_features=1280, out_features=1280)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path,
        subfolder="",
        linear_proj_name="weights.safetensors",
        torch_dtype=torch.float16,
    ):
        cls.dtype = torch_dtype
        config = CLIPTextModelWithProjection.config_class.from_pretrained(
            pretrained_model_name_or_path, subfolder=subfolder
        )
        model = cls(config=config)
        model.model_hf = CLIPTextModelWithProjection.from_pretrained(
            pretrained_model_name_or_path, subfolder=subfolder
        )
        linear_proj_state = load_file(
            os.path.join(pretrained_model_name_or_path, subfolder, linear_proj_name)
        )
        model.linear_proj.load_state_dict(linear_proj_state)
        return model

    def to(self, *args, **kwargs):
        device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
            *args, **kwargs
        )
        super(AniMemoryAltCLip, self).to(*args, **kwargs)
        self.dtype = dtype if dtype is not None else self.dtype
        self.device = device if device is not None else self.device
        return self

    def expand_mask(self, mask=None, dtype="", tgt_len=None):
        """
        Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
        """
        bsz, src_len = mask.size()
        tgt_len = tgt_len if tgt_len is not None else src_len

        expanded_mask = (
            mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
        )

        inverted_mask = 1.0 - expanded_mask

        return inverted_mask.masked_fill(
            inverted_mask.to(torch.bool), torch.finfo(dtype).min
        )

    def make_attn_mask(self, attn_mask):
        seq_len = attn_mask.shape[1]
        query = attn_mask.unsqueeze(1).float()
        attn_mask = (
            query.repeat([1, seq_len, 1]).unsqueeze(1).repeat([1, self.num_head, 1, 1])
        )
        attn_mask = attn_mask.view([-1, seq_len, seq_len])
        return attn_mask

    def gradient_checkpointing_enable(
        self,
    ):
        self.model_hf.gradient_checkpointing_enable()

    def forward(self, text, attention_mask):
        hidden_states = self.model_hf.text_model.embeddings(
            input_ids=text, position_ids=None
        )
        if attention_mask is None:
            print("Warning: attention_mask is None in altclip!")
        new_attn_mask = (
            self.expand_mask(attention_mask, hidden_states.dtype)
            if attention_mask is not None
            else None
        )
        encoder_outputs = self.model_hf.text_model.encoder(
            inputs_embeds=hidden_states,
            attention_mask=new_attn_mask,
            causal_attention_mask=None,
            output_attentions=False,
            output_hidden_states=True,
            return_dict=True,
        )
        last_hidden_state = encoder_outputs[0]
        last_hidden_state = self.model_hf.text_model.final_layer_norm(last_hidden_state)
        last_hidden_state = (
            last_hidden_state[torch.arange(last_hidden_state.shape[0]), 0]
            @ self.model_hf.text_projection.weight
        )
        pooled_output = self.linear_proj(last_hidden_state)

        extra_features = encoder_outputs.hidden_states[-2]
        extra_features = self.model_hf.text_model.final_layer_norm(extra_features)
        return extra_features, pooled_output