anikulkar commited on
Commit
76bf0ce
1 Parent(s): ff8c5c0

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,814 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:90
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: Ownership of NVIDIA Securities Information regarding ownership
35
+ of NVIDIA securities required by this item will be contained in our 2023 Proxy
36
+ Statement under the caption “Security Ownership of Certain Beneficial Owners and
37
+ Management,” and is hereby incorporated by reference.
38
+ sentences:
39
+ - What are the two operating segments of NVIDIA as mentioned in the text?
40
+ - What major factors contributed to the decrease in cash provided by operating activities
41
+ in fiscal year 2023?
42
+ - Where can information regarding the ownership of NVIDIA securities be found?
43
+ - source_sentence: Development and Retention To support employee development, we provide
44
+ opportunities to learn on-the-job through training programs, one on one coaching
45
+ and ongoing feedback. We have a library of live and on-demand learning experiences
46
+ that include workshops, panel discussions, and speaker forums. We curate learning
47
+ paths focused on our most common development needs and constantly upgrade our
48
+ offerings to ensure that our employees are exposed to the most current programs
49
+ and technologies available.
50
+ sentences:
51
+ - How much is authorized for the repurchase of additional shares of common stock
52
+ as of January 29, 2023?
53
+ - What position did Timothy S. Teter acquire at NVIDIA in 2018?
54
+ - What types of learning opportunities does the company provide to support employee
55
+ development?
56
+ - source_sentence: Data Center The NVIDIA computing platform is focused on accelerating
57
+ the most compute-intensive workloads, such as AI, data analytics, graphics and
58
+ scientific computing, across hyperscale, cloud, enterprise, public sector, and
59
+ edge data centers. The platform consists of our energy efficient GPUs, data processing
60
+ units, or DPUs, interconnects and systems, our CUDA programming model, and a growing
61
+ body of software libraries, software development kits, or SDKs, application frameworks
62
+ and services, which are either available as part of the platform or packaged and
63
+ sold separately.
64
+ sentences:
65
+ - What position did Colette M. Kress hold before joining NVIDIA in 2013?
66
+ - Where can NVIDIA's financial reports be accessed?
67
+ - What are the key components of the NVIDIA computing platform?
68
+ - source_sentence: Human Capital Management We believe that our employees are our
69
+ greatest assets, and they play a key role in creating long-term value for our
70
+ stakeholders. As of the end of fiscal year 2023, we had 26,196 employees in 35
71
+ countries, 19,532 were engaged in research and development and 6,664 were engaged
72
+ in sales, marketing, operations, and administrative positions.
73
+ sentences:
74
+ - What industries use NVIDIA's GPUs and software for automation?
75
+ - How many employees did the company have at the end of fiscal year 2023, and in
76
+ how many countries were they located?
77
+ - How does NVIDIA's platform strategy contribute to the markets it serves?
78
+ - source_sentence: Equity Compensation Plan Information Information regarding our
79
+ equity compensation plans required by this item will be contained in our 2023
80
+ Proxy Statement under the caption "Equity Compensation Plan Information," and
81
+ is hereby incorporated by reference.
82
+ sentences:
83
+ - What amount is recorded as unrecognized tax benefits at the end of fiscal year
84
+ 2023?
85
+ - What is the total amount authorized for the repurchase of common stock up to December
86
+ 2023?
87
+ - What document contains details about NVIDIA's equity compensation plans?
88
+ model-index:
89
+ - name: BGE base Financial Matryoshka
90
+ results:
91
+ - task:
92
+ type: information-retrieval
93
+ name: Information Retrieval
94
+ dataset:
95
+ name: dim 768
96
+ type: dim_768
97
+ metrics:
98
+ - type: cosine_accuracy@1
99
+ value: 0.6
100
+ name: Cosine Accuracy@1
101
+ - type: cosine_accuracy@3
102
+ value: 0.8
103
+ name: Cosine Accuracy@3
104
+ - type: cosine_accuracy@5
105
+ value: 1.0
106
+ name: Cosine Accuracy@5
107
+ - type: cosine_accuracy@10
108
+ value: 1.0
109
+ name: Cosine Accuracy@10
110
+ - type: cosine_precision@1
111
+ value: 0.6
112
+ name: Cosine Precision@1
113
+ - type: cosine_precision@3
114
+ value: 0.26666666666666666
115
+ name: Cosine Precision@3
116
+ - type: cosine_precision@5
117
+ value: 0.2
118
+ name: Cosine Precision@5
119
+ - type: cosine_precision@10
120
+ value: 0.1
121
+ name: Cosine Precision@10
122
+ - type: cosine_recall@1
123
+ value: 0.6
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@3
126
+ value: 0.8
127
+ name: Cosine Recall@3
128
+ - type: cosine_recall@5
129
+ value: 1.0
130
+ name: Cosine Recall@5
131
+ - type: cosine_recall@10
132
+ value: 1.0
133
+ name: Cosine Recall@10
134
+ - type: cosine_ndcg@10
135
+ value: 0.81232126232897
136
+ name: Cosine Ndcg@10
137
+ - type: cosine_mrr@10
138
+ value: 0.75
139
+ name: Cosine Mrr@10
140
+ - type: cosine_map@100
141
+ value: 0.75
142
+ name: Cosine Map@100
143
+ - task:
144
+ type: information-retrieval
145
+ name: Information Retrieval
146
+ dataset:
147
+ name: dim 512
148
+ type: dim_512
149
+ metrics:
150
+ - type: cosine_accuracy@1
151
+ value: 0.7
152
+ name: Cosine Accuracy@1
153
+ - type: cosine_accuracy@3
154
+ value: 0.8
155
+ name: Cosine Accuracy@3
156
+ - type: cosine_accuracy@5
157
+ value: 1.0
158
+ name: Cosine Accuracy@5
159
+ - type: cosine_accuracy@10
160
+ value: 1.0
161
+ name: Cosine Accuracy@10
162
+ - type: cosine_precision@1
163
+ value: 0.7
164
+ name: Cosine Precision@1
165
+ - type: cosine_precision@3
166
+ value: 0.26666666666666666
167
+ name: Cosine Precision@3
168
+ - type: cosine_precision@5
169
+ value: 0.2
170
+ name: Cosine Precision@5
171
+ - type: cosine_precision@10
172
+ value: 0.1
173
+ name: Cosine Precision@10
174
+ - type: cosine_recall@1
175
+ value: 0.7
176
+ name: Cosine Recall@1
177
+ - type: cosine_recall@3
178
+ value: 0.8
179
+ name: Cosine Recall@3
180
+ - type: cosine_recall@5
181
+ value: 1.0
182
+ name: Cosine Recall@5
183
+ - type: cosine_recall@10
184
+ value: 1.0
185
+ name: Cosine Recall@10
186
+ - type: cosine_ndcg@10
187
+ value: 0.8492282869718244
188
+ name: Cosine Ndcg@10
189
+ - type: cosine_mrr@10
190
+ value: 0.8
191
+ name: Cosine Mrr@10
192
+ - type: cosine_map@100
193
+ value: 0.8
194
+ name: Cosine Map@100
195
+ - task:
196
+ type: information-retrieval
197
+ name: Information Retrieval
198
+ dataset:
199
+ name: dim 256
200
+ type: dim_256
201
+ metrics:
202
+ - type: cosine_accuracy@1
203
+ value: 0.6
204
+ name: Cosine Accuracy@1
205
+ - type: cosine_accuracy@3
206
+ value: 0.8
207
+ name: Cosine Accuracy@3
208
+ - type: cosine_accuracy@5
209
+ value: 1.0
210
+ name: Cosine Accuracy@5
211
+ - type: cosine_accuracy@10
212
+ value: 1.0
213
+ name: Cosine Accuracy@10
214
+ - type: cosine_precision@1
215
+ value: 0.6
216
+ name: Cosine Precision@1
217
+ - type: cosine_precision@3
218
+ value: 0.26666666666666666
219
+ name: Cosine Precision@3
220
+ - type: cosine_precision@5
221
+ value: 0.2
222
+ name: Cosine Precision@5
223
+ - type: cosine_precision@10
224
+ value: 0.1
225
+ name: Cosine Precision@10
226
+ - type: cosine_recall@1
227
+ value: 0.6
228
+ name: Cosine Recall@1
229
+ - type: cosine_recall@3
230
+ value: 0.8
231
+ name: Cosine Recall@3
232
+ - type: cosine_recall@5
233
+ value: 1.0
234
+ name: Cosine Recall@5
235
+ - type: cosine_recall@10
236
+ value: 1.0
237
+ name: Cosine Recall@10
238
+ - type: cosine_ndcg@10
239
+ value: 0.81232126232897
240
+ name: Cosine Ndcg@10
241
+ - type: cosine_mrr@10
242
+ value: 0.75
243
+ name: Cosine Mrr@10
244
+ - type: cosine_map@100
245
+ value: 0.75
246
+ name: Cosine Map@100
247
+ - task:
248
+ type: information-retrieval
249
+ name: Information Retrieval
250
+ dataset:
251
+ name: dim 128
252
+ type: dim_128
253
+ metrics:
254
+ - type: cosine_accuracy@1
255
+ value: 0.7
256
+ name: Cosine Accuracy@1
257
+ - type: cosine_accuracy@3
258
+ value: 0.8
259
+ name: Cosine Accuracy@3
260
+ - type: cosine_accuracy@5
261
+ value: 1.0
262
+ name: Cosine Accuracy@5
263
+ - type: cosine_accuracy@10
264
+ value: 1.0
265
+ name: Cosine Accuracy@10
266
+ - type: cosine_precision@1
267
+ value: 0.7
268
+ name: Cosine Precision@1
269
+ - type: cosine_precision@3
270
+ value: 0.26666666666666666
271
+ name: Cosine Precision@3
272
+ - type: cosine_precision@5
273
+ value: 0.2
274
+ name: Cosine Precision@5
275
+ - type: cosine_precision@10
276
+ value: 0.1
277
+ name: Cosine Precision@10
278
+ - type: cosine_recall@1
279
+ value: 0.7
280
+ name: Cosine Recall@1
281
+ - type: cosine_recall@3
282
+ value: 0.8
283
+ name: Cosine Recall@3
284
+ - type: cosine_recall@5
285
+ value: 1.0
286
+ name: Cosine Recall@5
287
+ - type: cosine_recall@10
288
+ value: 1.0
289
+ name: Cosine Recall@10
290
+ - type: cosine_ndcg@10
291
+ value: 0.8492282869718244
292
+ name: Cosine Ndcg@10
293
+ - type: cosine_mrr@10
294
+ value: 0.8
295
+ name: Cosine Mrr@10
296
+ - type: cosine_map@100
297
+ value: 0.8
298
+ name: Cosine Map@100
299
+ - task:
300
+ type: information-retrieval
301
+ name: Information Retrieval
302
+ dataset:
303
+ name: dim 64
304
+ type: dim_64
305
+ metrics:
306
+ - type: cosine_accuracy@1
307
+ value: 0.5
308
+ name: Cosine Accuracy@1
309
+ - type: cosine_accuracy@3
310
+ value: 0.6
311
+ name: Cosine Accuracy@3
312
+ - type: cosine_accuracy@5
313
+ value: 0.9
314
+ name: Cosine Accuracy@5
315
+ - type: cosine_accuracy@10
316
+ value: 0.9
317
+ name: Cosine Accuracy@10
318
+ - type: cosine_precision@1
319
+ value: 0.5
320
+ name: Cosine Precision@1
321
+ - type: cosine_precision@3
322
+ value: 0.19999999999999998
323
+ name: Cosine Precision@3
324
+ - type: cosine_precision@5
325
+ value: 0.18
326
+ name: Cosine Precision@5
327
+ - type: cosine_precision@10
328
+ value: 0.09
329
+ name: Cosine Precision@10
330
+ - type: cosine_recall@1
331
+ value: 0.5
332
+ name: Cosine Recall@1
333
+ - type: cosine_recall@3
334
+ value: 0.6
335
+ name: Cosine Recall@3
336
+ - type: cosine_recall@5
337
+ value: 0.9
338
+ name: Cosine Recall@5
339
+ - type: cosine_recall@10
340
+ value: 0.9
341
+ name: Cosine Recall@10
342
+ - type: cosine_ndcg@10
343
+ value: 0.6879135676952786
344
+ name: Cosine Ndcg@10
345
+ - type: cosine_mrr@10
346
+ value: 0.62
347
+ name: Cosine Mrr@10
348
+ - type: cosine_map@100
349
+ value: 0.6283333333333333
350
+ name: Cosine Map@100
351
+ ---
352
+
353
+ # BGE base Financial Matryoshka
354
+
355
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
356
+
357
+ ## Model Details
358
+
359
+ ### Model Description
360
+ - **Model Type:** Sentence Transformer
361
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
362
+ - **Maximum Sequence Length:** 512 tokens
363
+ - **Output Dimensionality:** 768 tokens
364
+ - **Similarity Function:** Cosine Similarity
365
+ <!-- - **Training Dataset:** Unknown -->
366
+ - **Language:** en
367
+ - **License:** apache-2.0
368
+
369
+ ### Model Sources
370
+
371
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
372
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
373
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
374
+
375
+ ### Full Model Architecture
376
+
377
+ ```
378
+ SentenceTransformer(
379
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
380
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
381
+ (2): Normalize()
382
+ )
383
+ ```
384
+
385
+ ## Usage
386
+
387
+ ### Direct Usage (Sentence Transformers)
388
+
389
+ First install the Sentence Transformers library:
390
+
391
+ ```bash
392
+ pip install -U sentence-transformers
393
+ ```
394
+
395
+ Then you can load this model and run inference.
396
+ ```python
397
+ from sentence_transformers import SentenceTransformer
398
+
399
+ # Download from the 🤗 Hub
400
+ model = SentenceTransformer("anikulkar/bge-base-financial-matryoshka-nvda")
401
+ # Run inference
402
+ sentences = [
403
+ 'Equity Compensation Plan Information Information regarding our equity compensation plans required by this item will be contained in our 2023 Proxy Statement under the caption "Equity Compensation Plan Information," and is hereby incorporated by reference.',
404
+ "What document contains details about NVIDIA's equity compensation plans?",
405
+ 'What is the total amount authorized for the repurchase of common stock up to December 2023?',
406
+ ]
407
+ embeddings = model.encode(sentences)
408
+ print(embeddings.shape)
409
+ # [3, 768]
410
+
411
+ # Get the similarity scores for the embeddings
412
+ similarities = model.similarity(embeddings, embeddings)
413
+ print(similarities.shape)
414
+ # [3, 3]
415
+ ```
416
+
417
+ <!--
418
+ ### Direct Usage (Transformers)
419
+
420
+ <details><summary>Click to see the direct usage in Transformers</summary>
421
+
422
+ </details>
423
+ -->
424
+
425
+ <!--
426
+ ### Downstream Usage (Sentence Transformers)
427
+
428
+ You can finetune this model on your own dataset.
429
+
430
+ <details><summary>Click to expand</summary>
431
+
432
+ </details>
433
+ -->
434
+
435
+ <!--
436
+ ### Out-of-Scope Use
437
+
438
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
439
+ -->
440
+
441
+ ## Evaluation
442
+
443
+ ### Metrics
444
+
445
+ #### Information Retrieval
446
+ * Dataset: `dim_768`
447
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
448
+
449
+ | Metric | Value |
450
+ |:--------------------|:---------|
451
+ | cosine_accuracy@1 | 0.6 |
452
+ | cosine_accuracy@3 | 0.8 |
453
+ | cosine_accuracy@5 | 1.0 |
454
+ | cosine_accuracy@10 | 1.0 |
455
+ | cosine_precision@1 | 0.6 |
456
+ | cosine_precision@3 | 0.2667 |
457
+ | cosine_precision@5 | 0.2 |
458
+ | cosine_precision@10 | 0.1 |
459
+ | cosine_recall@1 | 0.6 |
460
+ | cosine_recall@3 | 0.8 |
461
+ | cosine_recall@5 | 1.0 |
462
+ | cosine_recall@10 | 1.0 |
463
+ | cosine_ndcg@10 | 0.8123 |
464
+ | cosine_mrr@10 | 0.75 |
465
+ | **cosine_map@100** | **0.75** |
466
+
467
+ #### Information Retrieval
468
+ * Dataset: `dim_512`
469
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
470
+
471
+ | Metric | Value |
472
+ |:--------------------|:--------|
473
+ | cosine_accuracy@1 | 0.7 |
474
+ | cosine_accuracy@3 | 0.8 |
475
+ | cosine_accuracy@5 | 1.0 |
476
+ | cosine_accuracy@10 | 1.0 |
477
+ | cosine_precision@1 | 0.7 |
478
+ | cosine_precision@3 | 0.2667 |
479
+ | cosine_precision@5 | 0.2 |
480
+ | cosine_precision@10 | 0.1 |
481
+ | cosine_recall@1 | 0.7 |
482
+ | cosine_recall@3 | 0.8 |
483
+ | cosine_recall@5 | 1.0 |
484
+ | cosine_recall@10 | 1.0 |
485
+ | cosine_ndcg@10 | 0.8492 |
486
+ | cosine_mrr@10 | 0.8 |
487
+ | **cosine_map@100** | **0.8** |
488
+
489
+ #### Information Retrieval
490
+ * Dataset: `dim_256`
491
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
492
+
493
+ | Metric | Value |
494
+ |:--------------------|:---------|
495
+ | cosine_accuracy@1 | 0.6 |
496
+ | cosine_accuracy@3 | 0.8 |
497
+ | cosine_accuracy@5 | 1.0 |
498
+ | cosine_accuracy@10 | 1.0 |
499
+ | cosine_precision@1 | 0.6 |
500
+ | cosine_precision@3 | 0.2667 |
501
+ | cosine_precision@5 | 0.2 |
502
+ | cosine_precision@10 | 0.1 |
503
+ | cosine_recall@1 | 0.6 |
504
+ | cosine_recall@3 | 0.8 |
505
+ | cosine_recall@5 | 1.0 |
506
+ | cosine_recall@10 | 1.0 |
507
+ | cosine_ndcg@10 | 0.8123 |
508
+ | cosine_mrr@10 | 0.75 |
509
+ | **cosine_map@100** | **0.75** |
510
+
511
+ #### Information Retrieval
512
+ * Dataset: `dim_128`
513
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
514
+
515
+ | Metric | Value |
516
+ |:--------------------|:--------|
517
+ | cosine_accuracy@1 | 0.7 |
518
+ | cosine_accuracy@3 | 0.8 |
519
+ | cosine_accuracy@5 | 1.0 |
520
+ | cosine_accuracy@10 | 1.0 |
521
+ | cosine_precision@1 | 0.7 |
522
+ | cosine_precision@3 | 0.2667 |
523
+ | cosine_precision@5 | 0.2 |
524
+ | cosine_precision@10 | 0.1 |
525
+ | cosine_recall@1 | 0.7 |
526
+ | cosine_recall@3 | 0.8 |
527
+ | cosine_recall@5 | 1.0 |
528
+ | cosine_recall@10 | 1.0 |
529
+ | cosine_ndcg@10 | 0.8492 |
530
+ | cosine_mrr@10 | 0.8 |
531
+ | **cosine_map@100** | **0.8** |
532
+
533
+ #### Information Retrieval
534
+ * Dataset: `dim_64`
535
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
536
+
537
+ | Metric | Value |
538
+ |:--------------------|:-----------|
539
+ | cosine_accuracy@1 | 0.5 |
540
+ | cosine_accuracy@3 | 0.6 |
541
+ | cosine_accuracy@5 | 0.9 |
542
+ | cosine_accuracy@10 | 0.9 |
543
+ | cosine_precision@1 | 0.5 |
544
+ | cosine_precision@3 | 0.2 |
545
+ | cosine_precision@5 | 0.18 |
546
+ | cosine_precision@10 | 0.09 |
547
+ | cosine_recall@1 | 0.5 |
548
+ | cosine_recall@3 | 0.6 |
549
+ | cosine_recall@5 | 0.9 |
550
+ | cosine_recall@10 | 0.9 |
551
+ | cosine_ndcg@10 | 0.6879 |
552
+ | cosine_mrr@10 | 0.62 |
553
+ | **cosine_map@100** | **0.6283** |
554
+
555
+ <!--
556
+ ## Bias, Risks and Limitations
557
+
558
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
559
+ -->
560
+
561
+ <!--
562
+ ### Recommendations
563
+
564
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
565
+ -->
566
+
567
+ ## Training Details
568
+
569
+ ### Training Dataset
570
+
571
+ #### Unnamed Dataset
572
+
573
+
574
+ * Size: 90 training samples
575
+ * Columns: <code>positive</code> and <code>anchor</code>
576
+ * Approximate statistics based on the first 1000 samples:
577
+ | | positive | anchor |
578
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
579
+ | type | string | string |
580
+ | details | <ul><li>min: 22 tokens</li><li>mean: 56.66 tokens</li><li>max: 142 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 19.33 tokens</li><li>max: 32 tokens</li></ul> |
581
+ * Samples:
582
+ | positive | anchor |
583
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|
584
+ | <code>We also offer the NVIDIA GPU Cloud registry, or NGC, a comprehensive catalog of easy-to-use, optimized software stacks across a range of domains including scientific computing, deep learning, and machine learning. With NGC, AI developers, researchers and data scientists can get started with the development of AI and HPC applications and deploy them on DGX systems, NVIDIA-Certified systems from our partners, or with NVIDIA’s cloud partners.</code> | <code>What does the NVIDIA GPU Cloud registry offer?</code> |
585
+ | <code>To the extent realization of the deferred tax assets becomes more-likely-than-not, we would recognize such deferred tax assets as income tax benefits during the period.</code> | <code>What will be recognized as income tax benefits if the realization of deferred tax assets becomes more-likely-than-not?</code> |
586
+ | <code>Fueled by the sustained demand for exceptional 3D graphics and the scale of the gaming market, NVIDIA has leveraged its GPU architecture to create platforms for scientific computing, AI, data science, AV, robotics, metaverse and 3D internet applications.</code> | <code>How did NVIDIA pivot its GPU architecture usage beyond PC graphics?</code> |
587
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
588
+ ```json
589
+ {
590
+ "loss": "MultipleNegativesRankingLoss",
591
+ "matryoshka_dims": [
592
+ 768,
593
+ 512,
594
+ 256,
595
+ 128,
596
+ 64
597
+ ],
598
+ "matryoshka_weights": [
599
+ 1,
600
+ 1,
601
+ 1,
602
+ 1,
603
+ 1
604
+ ],
605
+ "n_dims_per_step": -1
606
+ }
607
+ ```
608
+
609
+ ### Training Hyperparameters
610
+ #### Non-Default Hyperparameters
611
+
612
+ - `eval_strategy`: epoch
613
+ - `per_device_train_batch_size`: 32
614
+ - `per_device_eval_batch_size`: 16
615
+ - `gradient_accumulation_steps`: 16
616
+ - `learning_rate`: 2e-05
617
+ - `num_train_epochs`: 4
618
+ - `lr_scheduler_type`: cosine
619
+ - `warmup_ratio`: 0.1
620
+ - `tf32`: False
621
+ - `load_best_model_at_end`: True
622
+ - `batch_sampler`: no_duplicates
623
+
624
+ #### All Hyperparameters
625
+ <details><summary>Click to expand</summary>
626
+
627
+ - `overwrite_output_dir`: False
628
+ - `do_predict`: False
629
+ - `eval_strategy`: epoch
630
+ - `prediction_loss_only`: True
631
+ - `per_device_train_batch_size`: 32
632
+ - `per_device_eval_batch_size`: 16
633
+ - `per_gpu_train_batch_size`: None
634
+ - `per_gpu_eval_batch_size`: None
635
+ - `gradient_accumulation_steps`: 16
636
+ - `eval_accumulation_steps`: None
637
+ - `learning_rate`: 2e-05
638
+ - `weight_decay`: 0.0
639
+ - `adam_beta1`: 0.9
640
+ - `adam_beta2`: 0.999
641
+ - `adam_epsilon`: 1e-08
642
+ - `max_grad_norm`: 1.0
643
+ - `num_train_epochs`: 4
644
+ - `max_steps`: -1
645
+ - `lr_scheduler_type`: cosine
646
+ - `lr_scheduler_kwargs`: {}
647
+ - `warmup_ratio`: 0.1
648
+ - `warmup_steps`: 0
649
+ - `log_level`: passive
650
+ - `log_level_replica`: warning
651
+ - `log_on_each_node`: True
652
+ - `logging_nan_inf_filter`: True
653
+ - `save_safetensors`: True
654
+ - `save_on_each_node`: False
655
+ - `save_only_model`: False
656
+ - `restore_callback_states_from_checkpoint`: False
657
+ - `no_cuda`: False
658
+ - `use_cpu`: False
659
+ - `use_mps_device`: False
660
+ - `seed`: 42
661
+ - `data_seed`: None
662
+ - `jit_mode_eval`: False
663
+ - `use_ipex`: False
664
+ - `bf16`: False
665
+ - `fp16`: False
666
+ - `fp16_opt_level`: O1
667
+ - `half_precision_backend`: auto
668
+ - `bf16_full_eval`: False
669
+ - `fp16_full_eval`: False
670
+ - `tf32`: False
671
+ - `local_rank`: 0
672
+ - `ddp_backend`: None
673
+ - `tpu_num_cores`: None
674
+ - `tpu_metrics_debug`: False
675
+ - `debug`: []
676
+ - `dataloader_drop_last`: False
677
+ - `dataloader_num_workers`: 0
678
+ - `dataloader_prefetch_factor`: None
679
+ - `past_index`: -1
680
+ - `disable_tqdm`: False
681
+ - `remove_unused_columns`: True
682
+ - `label_names`: None
683
+ - `load_best_model_at_end`: True
684
+ - `ignore_data_skip`: False
685
+ - `fsdp`: []
686
+ - `fsdp_min_num_params`: 0
687
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
688
+ - `fsdp_transformer_layer_cls_to_wrap`: None
689
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
690
+ - `deepspeed`: None
691
+ - `label_smoothing_factor`: 0.0
692
+ - `optim`: adamw_torch
693
+ - `optim_args`: None
694
+ - `adafactor`: False
695
+ - `group_by_length`: False
696
+ - `length_column_name`: length
697
+ - `ddp_find_unused_parameters`: None
698
+ - `ddp_bucket_cap_mb`: None
699
+ - `ddp_broadcast_buffers`: False
700
+ - `dataloader_pin_memory`: True
701
+ - `dataloader_persistent_workers`: False
702
+ - `skip_memory_metrics`: True
703
+ - `use_legacy_prediction_loop`: False
704
+ - `push_to_hub`: False
705
+ - `resume_from_checkpoint`: None
706
+ - `hub_model_id`: None
707
+ - `hub_strategy`: every_save
708
+ - `hub_private_repo`: False
709
+ - `hub_always_push`: False
710
+ - `gradient_checkpointing`: False
711
+ - `gradient_checkpointing_kwargs`: None
712
+ - `include_inputs_for_metrics`: False
713
+ - `eval_do_concat_batches`: True
714
+ - `fp16_backend`: auto
715
+ - `push_to_hub_model_id`: None
716
+ - `push_to_hub_organization`: None
717
+ - `mp_parameters`:
718
+ - `auto_find_batch_size`: False
719
+ - `full_determinism`: False
720
+ - `torchdynamo`: None
721
+ - `ray_scope`: last
722
+ - `ddp_timeout`: 1800
723
+ - `torch_compile`: False
724
+ - `torch_compile_backend`: None
725
+ - `torch_compile_mode`: None
726
+ - `dispatch_batches`: None
727
+ - `split_batches`: None
728
+ - `include_tokens_per_second`: False
729
+ - `include_num_input_tokens_seen`: False
730
+ - `neftune_noise_alpha`: None
731
+ - `optim_target_modules`: None
732
+ - `batch_eval_metrics`: False
733
+ - `batch_sampler`: no_duplicates
734
+ - `multi_dataset_batch_sampler`: proportional
735
+
736
+ </details>
737
+
738
+ ### Training Logs
739
+ | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
740
+ |:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
741
+ | 1.0 | 1 | 0.6952 | 0.6617 | 0.725 | 0.5966 | 0.7167 |
742
+ | 2.0 | 2 | 0.7060 | 0.75 | 0.8 | 0.6086 | 0.8 |
743
+ | 3.0 | 3 | 0.72 | 0.75 | 0.8 | 0.6277 | 0.75 |
744
+ | **4.0** | **4** | **0.8** | **0.75** | **0.8** | **0.6283** | **0.75** |
745
+
746
+ * The bold row denotes the saved checkpoint.
747
+
748
+ ### Framework Versions
749
+ - Python: 3.10.12
750
+ - Sentence Transformers: 3.0.1
751
+ - Transformers: 4.41.2
752
+ - PyTorch: 2.3.0+cu121
753
+ - Accelerate: 0.32.1
754
+ - Datasets: 2.20.0
755
+ - Tokenizers: 0.19.1
756
+
757
+ ## Citation
758
+
759
+ ### BibTeX
760
+
761
+ #### Sentence Transformers
762
+ ```bibtex
763
+ @inproceedings{reimers-2019-sentence-bert,
764
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
765
+ author = "Reimers, Nils and Gurevych, Iryna",
766
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
767
+ month = "11",
768
+ year = "2019",
769
+ publisher = "Association for Computational Linguistics",
770
+ url = "https://arxiv.org/abs/1908.10084",
771
+ }
772
+ ```
773
+
774
+ #### MatryoshkaLoss
775
+ ```bibtex
776
+ @misc{kusupati2024matryoshka,
777
+ title={Matryoshka Representation Learning},
778
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
779
+ year={2024},
780
+ eprint={2205.13147},
781
+ archivePrefix={arXiv},
782
+ primaryClass={cs.LG}
783
+ }
784
+ ```
785
+
786
+ #### MultipleNegativesRankingLoss
787
+ ```bibtex
788
+ @misc{henderson2017efficient,
789
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
790
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
791
+ year={2017},
792
+ eprint={1705.00652},
793
+ archivePrefix={arXiv},
794
+ primaryClass={cs.CL}
795
+ }
796
+ ```
797
+
798
+ <!--
799
+ ## Glossary
800
+
801
+ *Clearly define terms in order to be accessible across audiences.*
802
+ -->
803
+
804
+ <!--
805
+ ## Model Card Authors
806
+
807
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
808
+ -->
809
+
810
+ <!--
811
+ ## Model Card Contact
812
+
813
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
814
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70519632c0f0f48be34185647ea2a170e790dd953df964acdf8f5af8ff687e21
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff