andreeabodea commited on
Commit
e993c2b
·
verified ·
1 Parent(s): c95fb59

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import pdfplumber
4
+ from transformers import pipeline
5
+ from io import BytesIO
6
+ import re
7
+
8
+ # Initialize the question-answering pipeline with a specific pre-trained model
9
+ qa_pipeline = pipeline("question-answering", model="deepset/gelectra-large-germanquad")
10
+
11
+ def extract_text_from_pdf(file_obj):
12
+ """Extracts text from a PDF file."""
13
+ text = []
14
+ with pdfplumber.open(file_obj) as pdf:
15
+ for page in pdf.pages:
16
+ page_text = page.extract_text()
17
+ if page_text: # Make sure there's text on the page
18
+ text.append(page_text)
19
+ return " ".join(text)
20
+
21
+ def answer_questions(context):
22
+ """Generates answers to predefined questions based on the provided context."""
23
+ questions = [
24
+ "Welches ist das Titel des Moduls?",
25
+ "Welches ist das Sektor oder das Kernthema?",
26
+ "Welches ist das Land?",
27
+ "Zu welchem Program oder EZ-Programm gehört das Projekt?"
28
+ ]
29
+ answers = {q: qa_pipeline(question=q, context=context)['answer'] for q in questions}
30
+ return answers
31
+
32
+ def process_pdf(file):
33
+ """Process a PDF file to extract text and then use the text to answer questions."""
34
+ # Read the PDF file from Gradio's file input, which is a temporary file path
35
+ with file as file_path:
36
+ text = extract_text_from_pdf(BytesIO(file_path.read()))
37
+ results = answer_questions(text)
38
+ return "\n".join(f"{q}: {a}" for q, a in results.items())
39
+
40
+ # Define the Gradio interface
41
+ iface = gr.Interface(
42
+ fn=process_pdf,
43
+ inputs=gr.inputs.File(type="pdf", label="Upload your PDF file"),
44
+ outputs=gr.outputs.Textbox(label="Extracted Information and Answers"),
45
+ title="PDF Text Extractor and Question Answerer",
46
+ description="Upload a PDF file to extract text and answer predefined questions based on the content."
47
+ )
48
+
49
+ if __name__ == "__main__":
50
+ iface.launch()