|
|
|
import gradio as gr |
|
import pdfplumber |
|
from transformers import pipeline |
|
from io import BytesIO |
|
import re |
|
|
|
|
|
qa_pipeline = pipeline("question-answering", model="deepset/gelectra-large-germanquad") |
|
|
|
def extract_text_from_pdf(file_obj): |
|
"""Extracts text from a PDF file.""" |
|
text = [] |
|
with pdfplumber.open(file_obj) as pdf: |
|
for page in pdf.pages: |
|
page_text = page.extract_text() |
|
if page_text: |
|
text.append(page_text) |
|
return " ".join(text) |
|
|
|
def answer_questions(context): |
|
"""Generates answers to predefined questions based on the provided context.""" |
|
questions = [ |
|
"Welches ist das Titel des Moduls?", |
|
"Welches ist das Sektor oder das Kernthema?", |
|
"Welches ist das Land?", |
|
"Zu welchem Program oder EZ-Programm gehört das Projekt?" |
|
] |
|
answers = {q: qa_pipeline(question=q, context=context)['answer'] for q in questions} |
|
return answers |
|
|
|
def process_pdf(file): |
|
"""Process a PDF file to extract text and then use the text to answer questions.""" |
|
|
|
with file as file_path: |
|
text = extract_text_from_pdf(BytesIO(file_path.read())) |
|
results = answer_questions(text) |
|
return "\n".join(f"{q}: {a}" for q, a in results.items()) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_pdf, |
|
inputs=gr.inputs.File(type="pdf", label="Upload your PDF file"), |
|
outputs=gr.outputs.Textbox(label="Extracted Information and Answers"), |
|
title="PDF Text Extractor and Question Answerer", |
|
description="Upload a PDF file to extract text and answer predefined questions based on the content." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |