ppo-LunarLander-v2 / config.json
anacg's picture
Upload PPO LunarLander-v2 trained agent
8e2df8b verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78b17ce6be20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b17ce6beb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b17ce6bf40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b17ce70040>", "_build": "<function ActorCriticPolicy._build at 0x78b17ce700d0>", "forward": "<function ActorCriticPolicy.forward at 0x78b17ce70160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78b17ce701f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b17ce70280>", "_predict": "<function ActorCriticPolicy._predict at 0x78b17ce70310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b17ce703a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b17ce70430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78b17ce704c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78b17ce11740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724327107886717883, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0c0byPxkC60n0ZvPxWhTQe/L+6I2ryswAAgD8AAIA/M79DvUgXkbo4kOe6wLC/tVm9krqrlQU6AACAPwAAgD9mcdy8i/nUPh7rirvnRSu+iZgJPQBYnLsAAAAAAAAAAACueTxY35k/hnKRPRLTm76wb6U7cesavAAAAAAAAAAAM9sova4tiboz+nc7NUEMNgYRHDoaJwI1AACAPwAAgD8GdUQ+OOnRPlUo/b1dIHC+wG1NvG3XFr0AAAAAAAAAAJNkA74ed5c/ctJAvnmxiL7r1e69emJ3PQAAAAAAAAAAZjHJPLgm1Llh2UC69wdMtt3ikDqrfmM5AACAPwAAgD9t9o4+uB/8PrIz1r0CoT++Ls9CPYbA+TsAAAAAAAAAAIBgsz1cexK6aM9euXeB6bPD59Y6ASiBOAAAgD8AAIA/mi3fvHuul7oTY6i7iU3XthF0ozpCt8I6AACAPwAAgD/SlYy+tMClPhtlUT7nY4a+w4OfO2p3jz0AAAAAAAAAAGYmdTqPdiq6kWKmuxDOfrfChrE7OB/BOgAAgD8AAIA/AKjhvEhhlboqHXG7lZw9OLQgJjvjkwI5AACAPwAAgD/NP2k99gxsuqLlUDomXXO2iDlFuw2QcLkAAIA/AACAPzN38bu49uu5RdBGu5rxkTSyfMM6biJmOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQExRJPIn0CmMAWyUTSQBjAF0lEdAlBTcQNCqqHV9lChoBkdAY2bGJemelWgHTegDaAhHQJQayac7Qsx1fZQoaAZHQGHR6K+BYmtoB03oA2gIR0CUJHU5dWyUdX2UKGgGR0AEae9SMtK7aAdNIgFoCEdAlCecurZJ1HV9lChoBkdAYdZRjz7MxGgHTegDaAhHQJQoyhGpdbB1fZQoaAZHQEXM68xsVL1oB00zAWgIR0CULTj5sTFmdX2UKGgGR0BkQ8dcSoOyaAdN6ANoCEdAlDC8hLXcxnV9lChoBkdAY/mquKXOW2gHTegDaAhHQJQwzHuJDVp1fZQoaAZHQGQ2+t8uzyBoB03oA2gIR0CUNF7YTTOPdX2UKGgGR0BgwdMoMKCyaAdN6ANoCEdAlDXZCBwuNHV9lChoBkdAX/DW8RL9M2gHTegDaAhHQJQ3KMIeHSF1fZQoaAZHQGJSoatLcsVoB03oA2gIR0CUOQNfgJkYdX2UKGgGR0BgBKTY/Vy4aAdN6ANoCEdAlFTcXWOIZnV9lChoBkdAYv8mhM8HOmgHTegDaAhHQJRZd/Yrauh1fZQoaAZHQGHYBgE2YOVoB03oA2gIR0CUWpq7iADrdX2UKGgGR0Bm1AJNTLntaAdN6ANoCEdAlF5NfTkQw3V9lChoBkdAZP/TOPeYUmgHTegDaAhHQJRerD7655J1fZQoaAZHQFsuBeXzDoBoB03oA2gIR0CUY0PgNwzddX2UKGgGR0A9c6kqMFUyaAdNKQFoCEdAlGcfgJkXlHV9lChoBkdAY/ss8xKxs2gHTegDaAhHQJRz+X5WRzR1fZQoaAZHQGN72sJY1YRoB03oA2gIR0CUeELpzLfUdX2UKGgGR0Bf2voq0+khaAdN6ANoCEdAlHn5oGpuM3V9lChoBkdAY8FN7BwdbWgHTegDaAhHQJSAYU9IPLB1fZQoaAZHQGGFwHqu8sdoB03oA2gIR0CUhBHmig01dX2UKGgGR0BgiIQtjCpFaAdN6ANoCEdAlIQk4m1IAnV9lChoBkdAYaCLk0aZQmgHTegDaAhHQJSHu9Ba9sd1fZQoaAZHQGCruU2UB4loB03oA2gIR0CUiS9WZJCjdX2UKGgGR0Biay6OHWSVaAdN6ANoCEdAlIqK+ajN6nV9lChoBkdAK8tlZowmFGgHTQoBaAhHQJSK/oyKvV51fZQoaAZHQGOt2lVLi/BoB03oA2gIR0CUjGg+yJKrdX2UKGgGR0BepwCSzPa+aAdN6ANoCEdAlKnGC/XXiHV9lChoBkdAYxScjqv/zmgHTegDaAhHQJSrOwUxmCl1fZQoaAZHQGaDXA/LTx5oB03oA2gIR0CUsDpvP1L8dX2UKGgGR0Bax02UB4lhaAdN6ANoCEdAlLC3QdCE6HV9lChoBkdAYI8p2ll9SmgHTegDaAhHQJS2Ldhy8z11fZQoaAZHQGG/3FLnLaFoB03oA2gIR0CUudm9xp+MdX2UKGgGR0BmFLBbfP5YaAdN6ANoCEdAlMZQrMC9y3V9lChoBkdAX0QLfDUExWgHTegDaAhHQJTJx4TsY2t1fZQoaAZHQGMeORcNYr9oB03oA2gIR0CUz/3mmtQsdX2UKGgGR0Bk7JH09QoDaAdN6ANoCEdAlNPqt5le4XV9lChoBkdAY53O/L1VYWgHTegDaAhHQJTT/meUY9B1fZQoaAZHQGHvYXXRPXVoB03oA2gIR0CU2DSn+AEudX2UKGgGR0BhSuvKU3XJaAdN6ANoCEdAlNneJxeb/nV9lChoBkdAWgQ9LYf4h2gHTegDaAhHQJTbX7qIJqt1fZQoaAZHQGAsWPT5O8FoB03oA2gIR0CU2+A/cFhYdX2UKGgGR0BkUVId2gWaaAdN6ANoCEdAlN2qFuejEnV9lChoBkdAXmZrftQbdmgHTegDaAhHQJT9VaW5Yo11fZQoaAZHQGBi3A2ycCpoB03oA2gIR0CU/m9wm3OOdX2UKGgGR0Bj+nP/rB0qaAdN6ANoCEdAlQHmuLaVU3V9lChoBkdAY3dhScbzb2gHTegDaAhHQJUCPlQuVX51fZQoaAZHQF7+jS5RTCNoB03oA2gIR0CVBlW+oLofdX2UKGgGR0Bjsp24d6syaAdN6ANoCEdAlQmySmqHXXV9lChoBkfAMZVUIcBEKGgHTRABaAhHQJURvvAoG6h1fZQoaAZHQGEzi++M6zVoB03oA2gIR0CVF0+YtxuLdX2UKGgGR0BmOQ9JSR8uaAdN6ANoCEdAlRs3kkrwv3V9lChoBkdAYri4vvjOs2gHTegDaAhHQJUhDpfQa751fZQoaAZHQGGR/ZVXFLpoB03oA2gIR0CVJOGDL8rJdX2UKGgGR0BjEFUsFt9AaAdN6ANoCEdAlSTz0xubZ3V9lChoBkdAZGONedCmdmgHTegDaAhHQJUpENwzch11fZQoaAZHQGTX5OafBepoB03oA2gIR0CVKsns9jgAdX2UKGgGR0Be0L3bmEGraAdN6ANoCEdAlSxQgPmPo3V9lChoBkdAYP1NN8E3bWgHTegDaAhHQJUs1yo4uK51fZQoaAZHQFcpUqQRwqBoB03oA2gIR0CVLnACGN70dX2UKGgGR0A2D5cC5mROaAdNHwFoCEdAlUgy+L3sX3V9lChoBkdASncYXO4XoGgHTSoBaAhHQJVOD1pTMq11fZQoaAZHQGORK1XvH95oB03oA2gIR0CVTtMt9QXRdX2UKGgGR0BhIRuXNTtLaAdN6ANoCEdAlU/emFaje3V9lChoBkdAY2djaPCEYmgHTegDaAhHQJVTpOLzf791fZQoaAZHQGTzdtVJcxFoB03oA2gIR0CVWBUL2HtXdX2UKGgGR0BiT42OyVv/aAdN6ANoCEdAlVu5Yoy9EnV9lChoBkdAPhLidat9yGgHTS8BaAhHQJVhR9c8klh1fZQoaAZHQGPyaV+qioNoB03oA2gIR0CVYwwSrYGudX2UKGgGR0Bl7NdJJ5E/aAdN6ANoCEdAlWdSI+GGmHV9lChoBkdAYBmZDRc/uGgHTegDaAhHQJVqmcawUxp1fZQoaAZHQF9r9OARTS9oB03oA2gIR0CVcUzWPLgXdX2UKGgGR0AxvBvaURnOaAdNBwFoCEdAlXUQNG3F1nV9lChoBkdAYR7Q9A5aNmgHTegDaAhHQJV1xrl/6O51fZQoaAZHQGUfz4+KTB9oB03oA2gIR0CVfjWxyGSIdX2UKGgGR0BnOfBeokzHaAdN6ANoCEdAlYBaNIbwSnV9lChoBkdAWXhd3Sro4mgHTegDaAhHQJWBEPGyX2N1fZQoaAZHQGTJE25xzaNoB03oA2gIR0CVgtdZ7ojfdX2UKGgGR0BF00IsyzomaAdNJQFoCEdAlYoJTMqz7nV9lChoBkdAYrq3GXHBDWgHTegDaAhHQJWKO3Zwn6V1fZQoaAZHQGIoF/x2B8RoB03oA2gIR0CVn+eLehwmdX2UKGgGR0BfdqAz544ZaAdN6ANoCEdAlaClINEw4HV9lChoBkdAYnHfnfVI7WgHTegDaAhHQJWlwWznied1fZQoaAZHQF8KaNuLrHFoB03oA2gIR0CVqzCMPz4DdX2UKGgGR8AwFVHnU2DQaAdNCAFoCEdAlav1ERaouXV9lChoBkdAW8FJPIn0CmgHTegDaAhHQJWwSgdwNsp1fZQoaAZHQF5IOJLuhK1oB03oA2gIR0CVt+CvovBadX2UKGgGR0BjW04zabnYaAdN6ANoCEdAlb4uh0yP/HV9lChoBkdAXJURg7YChmgHTegDaAhHQJXBoUSIxg11fZQoaAZHQGA6VzySV4ZoB03oA2gIR0CVyAZowmE5dX2UKGgGR0BhvOYv38GcaAdN6ANoCEdAlcwR91EE1XV9lChoBkdAYoWdRzijtWgHTegDaAhHQJXSt9lVcUx1fZQoaAZHQF365q/M4cZoB03oA2gIR0CV1IMw1zhhdX2UKGgGR0Bga2kN4JNTaAdN6ANoCEdAldUUaAFxGXV9lChoBkdAYtkb5M10kmgHTegDaAhHQJXW3oxHoX91fZQoaAZHQD6J4B3iaRZoB00QAWgIR0CV3cwhW5pbdX2UKGgGR0BjN/ZsbedkaAdN6ANoCEdAld8/K2a2F3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}