amusktweewt commited on
Commit
5b76e09
·
verified ·
1 Parent(s): 9648cbf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -117
README.md CHANGED
@@ -1,199 +1,145 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
 
 
130
 
131
  #### Summary
132
 
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - roneneldan/TinyStories
6
+ language:
7
+ - en
8
  ---
9
 
10
+ # Model Card for amusktweewt/tiny-stories-v1
 
 
 
11
 
12
+ This model is a custom transformer-based language model trained on the **TinyStories** dataset, designed for creative text generation tasks such as storytelling and conversational agents. **This model is purely an academic project and should not be used in production or practical applications.**
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
+ This model utilizes a custom tokenizer with Byte Pair Encoding (BPE) and has been trained with a smaller architecture to balance efficiency and performance. It is designed for generating coherent and contextually relevant short stories. However, a known issue with the tokenizer causes spaces between tokens to appear repeated, leading to suboptimal text output quality.
 
 
19
 
20
+ - **Developed by:** amusktweewt
21
+ - **Model type:** AutoModelForCausalLM
22
+ - **Language(s) (NLP):** English
23
+ - **License:** MIT
 
 
 
24
 
25
+ ### Model Sources
26
 
27
+ - **Repository:** HuggingFace repository
 
 
 
 
28
 
29
  ## Uses
30
 
 
 
31
  ### Direct Use
32
 
33
+ This model is intended for academic and research purposes only. It demonstrates a proof of concept for training smaller transformer-based language models.
 
 
 
 
 
 
 
 
34
 
35
  ### Out-of-Scope Use
36
 
37
+ - Not suitable for tasks requiring factual accuracy
38
+ - Should not be used in production environments or applications involving sensitive content
 
39
 
40
  ## Bias, Risks, and Limitations
41
 
42
+ ### Risks and Biases
43
 
44
+ The model may reflect biases present in the training data, leading to unintended or inappropriate outputs. Additionally, the tokenizer issue can result in suboptimal and incoherent text generations.
45
 
46
  ### Recommendations
47
 
48
+ This model is meant for research and demonstration purposes. Users should validate outputs critically and avoid using it for practical applications.
 
 
49
 
50
  ## How to Get Started with the Model
51
 
52
+ ```python
53
+ from transformers import AutoModelForCausalLM, PreTrainedTokenizerFast
54
 
55
+ model = AutoModelForCausalLM.from_pretrained("amusktweewt/tiny-stories-v1")
56
+ tokenizer = PreTrainedTokenizerFast.from_pretrained("amusktweewt/tiny-stories-v1")
57
+
58
+ prompt = "Once upon a time,"
59
+ inputs = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False)
60
+ outputs = model.generate(**inputs, max_new_tokens=50)
61
+
62
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
63
+ ```
64
 
65
  ## Training Details
66
 
67
  ### Training Data
68
 
69
+ The model was trained on the **TinyStories** dataset, consisting of curated short stories. Preprocessing ensured consistent formatting and tokenization using a custom BPE tokenizer.
 
 
70
 
71
  ### Training Procedure
72
 
73
+ #### Preprocessing
 
 
 
 
74
 
75
+ - Used BPE tokenizer with a vocabulary size of 4096
76
+ - Included special tokens: `<sos>`, `<pad>`, `<|endoftext|>`, and `<unk>`
77
 
78
  #### Training Hyperparameters
79
 
80
+ - **Batch size:** 64
81
+ - **Epochs:** 3
82
+ - **Learning rate:** 1e-3
83
+ - **Scheduler:** Cosine annealing
84
+ - **Precision:** Mixed precision (FP16)
85
 
86
+ #### Speeds, Sizes, Times
87
 
88
+ - **Training time:** Approx. 5 hours 30 minutes
89
+ - **Model size:** 230 MB
90
+ - **Dataset size:** 535.98 million tokens
91
 
92
  ## Evaluation
93
 
 
 
94
  ### Testing Data, Factors & Metrics
95
 
96
  #### Testing Data
97
 
98
+ A subset of the training data was used for evaluation, focusing on coherence and storytelling quality.
 
 
 
 
 
 
 
 
99
 
100
  #### Metrics
101
 
102
+ - **Loss**: 0.9723
103
+ - **Qualitative Evaluation**: Manual assessment of generated outputs for coherence and relevance.
 
104
 
105
  ### Results
106
 
107
+ - **Sample Outputs:**
108
+ - Prompt: "in a far away country"
109
+ Completion: "in a far away coun try . He was so excited to explore the world . He was so happy to be able to explore the world ."
110
 
111
  #### Summary
112
 
113
+ The model generates coherent short stories suitable for research demonstration but is limited by tokenizer issues and should not be used in real-world scenarios.
 
 
 
 
 
 
114
 
115
  ## Environmental Impact
116
 
117
+ - **Hardware Type:** NVIDIA 4090 GPU
118
+ - **Hours used:** 5.5
119
+ - **Carbon Emitted:** Approx. 0.2 kg CO2 eq
 
 
 
 
 
 
120
 
121
+ ## Technical Specifications
122
 
123
  ### Model Architecture and Objective
124
 
125
+ - Transformer architecture with 8 layers, 12 attention heads, and a hidden size of 768
126
 
127
  ### Compute Infrastructure
128
 
 
 
129
  #### Hardware
130
 
131
+ - Single GPU (NVIDIA 4090)
132
 
133
  #### Software
134
 
135
+ - Python 3.8+
136
+ - HuggingFace Transformers 4.x
137
+ - PyTorch 1.x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
+ ## Model Card Authors
140
 
141
+ amusktweewt
142
 
143
  ## Model Card Contact
144
 
145
+ For questions or feedback, contact amusktweewt.