File size: 1,851 Bytes
1088d93
 
 
 
 
 
 
 
 
 
d7b816e
 
1088d93
 
 
 
 
 
 
d7b816e
1088d93
6dc6c99
1088d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc6c99
1088d93
 
 
 
 
6dc6c99
 
 
 
 
 
1088d93
 
 
 
 
 
 
d7b816e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: MoritzLaurer/deberta-v3-base-zeroshot-v2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fine-tuned-MoritzLaurer-deberta-v3-base-zeroshot-v2.0-arceasy
  results: []
datasets:
- allenai/ai2_arc
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-MoritzLaurer-deberta-v3-base-zeroshot-v2.0-arceasy

This model is a fine-tuned version of [MoritzLaurer/deberta-v3-base-zeroshot-v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v2.0) on ARC-Easy dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9473
- Accuracy: 0.7123

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 71   | 1.0023          | 0.6947   |
| No log        | 2.0   | 142  | 1.0230          | 0.6982   |
| No log        | 3.0   | 213  | 0.9488          | 0.7053   |
| No log        | 4.0   | 284  | 0.9037          | 0.7211   |
| No log        | 5.0   | 355  | 0.9433          | 0.7123   |
| No log        | 6.0   | 426  | 0.9473          | 0.7123   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1