Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1891.38 +/- 76.03
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88660028ebf93d645edfd2ff71156afb4dadf297d9a5b4265ce9209b8bb7fffc
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f842157fa60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f842157faf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f842157fb80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f842157fc10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f842157fca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f842157fd30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f842157fdc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f842157fe50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f842157fee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f842157ff70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8421582040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84215820d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f842157ef00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678637995487802281,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJG2OD/R9II/p2OKvaGzB0CatSk/H7ObvD0WSD8UA3O/2Qlgv0A9zD59n2u/CKHmPYhMsD+QwHq+0v0BPxTmC0ARGrQ/HznEvMLeDD+hT8k8ewKNvzzDzr91dHo+ypHnPuK6Yb8OTNQ+HqIYwJx1RD/1yl8+T72EvkL0DT+L98k/E9e6P9zGyj9xLSQ/jvkwvk0u+D7n0qC/5hi1PjzDSr8DAKw+jGeeP9b/l77OI4Q/yb2OProx970dYBY/mFjKvgnYAT+G2i2/QqrrPs9GLj/iumG/DkzUPjuv1j6cdUQ/b6gsPuyypr6a7gw/O2yYP1lcqT+t2Z8/qxINPuaYvL9TBEA+Gykvv5WPJb+l4XY+T9mCP8veM79UFaM/PZrvvXZusz8GFCq+QGLxPpvZIr7E7Im/rb3+vz+mTj+n0C2+4rphvw5M1D4eohjAnHVEP5Ukwb6HlzI/z9prPnE9UD/8d3Q/es2QP9/O5j6oIks+4816vyNsGL+/qd++1Q0Pv0p5/75EnaQ/GKO5vqkYsz6jglc+H3AfPzarDT9mvi88MmAyvT3eR75jJ6S+T/7iPuK6Yb8OTNQ+O6/WPpx1RD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAI1Ey1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAJH7PQAAAADBy/S/AAAAAOL5hDwAAAAAu+XhPwAAAAB3Pr89AAAAAC5p5D8AAAAA94W0PAAAAAAJvvS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVh2tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIvr1DwAAAAA3fv8vwAAAAChi1S9AAAAAOEV6D8AAAAAweUdvAAAAABAi9s/AAAAAIXjij0AAAAAiA7avwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBbATYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJ8hU8AAAAAA9c2b8AAAAAQf7evAAAAAASYOI/AAAAAG6z5TwAAAAAYIXjPwAAAABmJsC9AAAAAJui/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3fkg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7HLKvQAAAABn2ee/AAAAAL4dkr0AAAAAR6vfPwAAAAC8KwI+AAAAAHfD7z8AAAAApz3XPAAAAADshPO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI2CPPcBU72MAWyUTegDjAF0lEdAqTEvmPo3aXV9lChoBkdAgtba+WWyDGgHTegDaAhHQKk0Y8FINEx1fZQoaAZHQJUEYCuEEkloB03oA2gIR0CpNaO/UONHdX2UKGgGR0CYs4Cpm29daAdN6ANoCEdAqTpRQzk6tHV9lChoBkdAl1sr6tT1kGgHTegDaAhHQKk/6+36Q/51fZQoaAZHQJKQkiQkondoB03oA2gIR0CpQ4nxz7uVdX2UKGgGR0CVzMUGVzIWaAdN6ANoCEdAqUTK0Sh8IHV9lChoBkdAmGaVd9lVcWgHTegDaAhHQKlJgz/p+tt1fZQoaAZHQJujwSSNfgJoB03oA2gIR0CpTwOB+WnkdX2UKGgGR0Cb7Ef1HvtuaAdN6ANoCEdAqVIZ4GD+SHV9lChoBkdAmaXFH4Glh2gHTegDaAhHQKlTV0wJw851fZQoaAZHQJnjwk6cRUZoB03oA2gIR0CpWBkc81XOdX2UKGgGR0CXOV/ag261aAdN6ANoCEdAqV2yXnhbW3V9lChoBkdAkqBRvvSc9WgHTegDaAhHQKlgd2kBS1p1fZQoaAZHQJj42po9LYhoB03oA2gIR0CpYVQTEit8dX2UKGgGR0CYSjt5UtI1aAdN6ANoCEdAqWSGpQ1rI3V9lChoBkdAeZm0D2alUWgHTegDaAhHQKlpJ1HOKO11fZQoaAZHQJalWNWEK3NoB03oA2gIR0Cpa+0SZjQRdX2UKGgGR0CUZWcRDkU9aAdN6ANoCEdAqWzJ0fYBeXV9lChoBkdAl6Ja4c3l0mgHTegDaAhHQKlwnppvgm91fZQoaAZHQJk9iPBBRhtoB03oA2gIR0Cpd/YyXUpedX2UKGgGR0CVc4WUKRdQaAdN6ANoCEdAqXtXzlLeynV9lChoBkdAlj7nSnccl2gHTegDaAhHQKl8Lf0Eov11fZQoaAZHQJYZb29L6DZoB03oA2gIR0Cpf5rGBFuvdX2UKGgGR0CWZSXKr7wbaAdN6ANoCEdAqYQ0cyWRinV9lChoBkdAlV0GbTc7AGgHTegDaAhHQKmG8fcvduZ1fZQoaAZHQJRvKOPvKEFoB03oA2gIR0Cph9E3S8aodX2UKGgGR0CWkwvUz9CNaAdN6ANoCEdAqYrt4Z/CqXV9lChoBkdAkj5CC8OCoWgHTegDaAhHQKmQaCNCJGh1fZQoaAZHQJGxV8/lhgFoB03oA2gIR0CplModuHerdX2UKGgGR0CS/TcAzYVZaAdN6ANoCEdAqZYqXrt3OnV9lChoBkdAhVrIGY8dP2gHTegDaAhHQKmZz9hqj8F1fZQoaAZHQJTSuh11W81oB03oA2gIR0Cpnml6Z6UrdX2UKGgGR0CJ9aax5cC6aAdN6ANoCEdAqaE3aWX1J3V9lChoBkdAlDHUvGp++mgHTegDaAhHQKmiFQZ4wAV1fZQoaAZHQJONxEXtShtoB03oA2gIR0CppSQVKwpwdX2UKGgGR0CUHlth/iHZaAdN6ANoCEdAqam6IcinpHV9lChoBkdAk6UQnx8UmGgHTegDaAhHQKms/3W4EwF1fZQoaAZHQJbArn6l+E1oB03oA2gIR0CprjutwJgLdX2UKGgGR0CU5OPMjeKsaAdN6ANoCEdAqbL2nKnvUnV9lChoBkdAmYW0SZjQRmgHTegDaAhHQKm4lqHGjsV1fZQoaAZHQJgMdTfixV1oB03oA2gIR0CpvCzFdcB2dX2UKGgGR0CaPkrBCUosaAdN6ANoCEdAqb1x+WnjyXV9lChoBkdAmIZlUlzEJmgHTegDaAhHQKnCPSOR1YB1fZQoaAZHQJvQ3hYNiH9oB03oA2gIR0Cpx4Edmxt6dX2UKGgGR0CZ4wB5HEuQaAdN6ANoCEdAqcqe1a4c3nV9lChoBkdAmE6cYZVGTmgHTegDaAhHQKnL4PUaybB1fZQoaAZHQJo3HyauwHJoB03oA2gIR0Cp0KzYEnstdX2UKGgGR0CWEYbVBlcyaAdN6ANoCEdAqdZD8zhxYXV9lChoBkdAm3GW+9Jz1mgHTegDaAhHQKnY/CQ9zOp1fZQoaAZHQJcNYTg2qDNoB03oA2gIR0Cp2dceKbazdX2UKGgGR0CbE3r3j+72aAdN6ANoCEdAqdzw6r/823V9lChoBkdAk+3bx7RfGGgHTegDaAhHQKnheA93bEh1fZQoaAZHQJrPCAqd6LRoB03oA2gIR0Cp5DCSaEzwdX2UKGgGR0Ca141dPci4aAdN6ANoCEdAqeUHgrH2iHV9lChoBkdAnStFMqSX+mgHTegDaAhHQKnoVcQAdXF1fZQoaAZHQJka7LaEi+toB03oA2gIR0Cp70RYigTRdX2UKGgGR0CX0+7sfJV9aAdN6ANoCEdAqfLlv2oNu3V9lChoBkdAmvIp/smfG2gHTegDaAhHQKnzvj6N2kl1fZQoaAZHQJherGZNO/NoB03oA2gIR0Cp9uqbz9S/dX2UKGgGR0CVVsKsMiKSaAdN6ANoCEdAqfvnb48EFHV9lChoBkdAl3f/X05EMWgHTegDaAhHQKn+oV5a/yp1fZQoaAZHQJjqW8Djin5oB03oA2gIR0Cp/31tfoicdX2UKGgGR0CZKBpfx+a0aAdN6ANoCEdAqgKSCnP3SXV9lChoBkdAmHS3EZR8+mgHTegDaAhHQKoH1MB6rvN1fZQoaAZHQJosXu1F6RhoB03oA2gIR0CqDAS+6Ae8dX2UKGgGR0CcSwseXAuaaAdN6ANoCEdAqg1ZRbbDdnV9lChoBkdAmUs78zhxYWgHTegDaAhHQKoRNxoZhrp1fZQoaAZHQJkE4KCxu89oB03oA2gIR0CqFbMKb8WLdX2UKGgGR0CbnVPKdQO4aAdN6ANoCEdAqhhty3kPtnV9lChoBkdAnB7TIq9XcWgHTegDaAhHQKoZRMMZxaR1fZQoaAZHQJkx6K4x1xNoB03oA2gIR0CqHE1BMSK4dX2UKGgGR0CcFLIhQm/naAdN6ANoCEdAqiDpOpKjBXV9lChoBkdAkwZOM2m52GgHTegDaAhHQKojvbh3qzJ1fZQoaAZHQI/TM0elsP9oB03oA2gIR0CqJRY1P3zudX2UKGgGR0CGi/VQyhzvaAdN6ANoCEdAqinKkTHsC3V9lChoBkdAlYRjLjghr2gHTegDaAhHQKovuHQhOgx1fZQoaAZHQJwcu7Xg9/1oB03oA2gIR0CqMqjxCpm3dX2UKGgGR0CWIJysS00FaAdN6ANoCEdAqjPrl/6O53V9lChoBkdAmcOA80UGmmgHTegDaAhHQKo49wiJO351fZQoaAZHQJPiTjHXEqFoB03oA2gIR0CqPo+gUUO/dX2UKGgGR0CUkcT/ACXAaAdN6ANoCEdAqkFPYYixFHV9lChoBkdAjbBISteUp2gHTegDaAhHQKpCcYnfEXN1fZQoaAZHQIhU/JPqLTBoB03oA2gIR0CqRxCVrylOdX2UKGgGR0CZL85byH2zaAdN6ANoCEdAqk1voxHoYHV9lChoBkdAmeYOXzDn/2gHTegDaAhHQKpQKjesPrh1fZQoaAZHQJbw6ThYNiJoB03oA2gIR0CqUQQGW2PUdX2UKGgGR0CbuwSsKb8WaAdN6ANoCEdAqlQbFId2gXV9lChoBkdAkHqrPIGQjmgHTdcCaAhHQKpYVuzhP0t1fZQoaAZHQJn/wkrwvxpoB03oA2gIR0CqWKqYqoZRdX2UKGgGR0CZMQXKbKA8aAdN6ANoCEdAqlw/t+kP+XV9lChoBkdAl2BmCROk+GgHTegDaAhHQKpfXQpnYg91fZQoaAZHQJkuG6GxlhBoB03oA2gIR0CqZZvGQ0XQdX2UKGgGR0CYClBoEjgRaAdN6ANoCEdAqmYf62v0RXV9lChoBkdAmQND9S/CZWgHTegDaAhHQKprLqnFYMh1fZQoaAZHQJohzsF+uvFoB03oA2gIR0CqbkUPQOWjdX2UKGgGR0CZzKuDBdleaAdN6ANoCEdAqnKx60IC2nV9lChoBkdAmHeK0QbuMWgHTegDaAhHQKpzA+fywwF1fZQoaAZHQJlOkc5sCT5oB03oA2gIR0CqdpU2tMfzdX2UKGgGR0CWu6RjjJdTaAdN6ANoCEdAqnmqyOaOP3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c3df811199131d9dd0650a1a8bfd81985ff49b73a7c24c56b675427f2870499
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bcd2818c5bbd462118cb6541d439808a7d61621546239ef2c5c70f5fd88bbe8
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f842157fa60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f842157faf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f842157fb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f842157fc10>", "_build": "<function ActorCriticPolicy._build at 0x7f842157fca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f842157fd30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f842157fdc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f842157fe50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f842157fee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f842157ff70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8421582040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84215820d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f842157ef00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678637995487802281, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJG2OD/R9II/p2OKvaGzB0CatSk/H7ObvD0WSD8UA3O/2Qlgv0A9zD59n2u/CKHmPYhMsD+QwHq+0v0BPxTmC0ARGrQ/HznEvMLeDD+hT8k8ewKNvzzDzr91dHo+ypHnPuK6Yb8OTNQ+HqIYwJx1RD/1yl8+T72EvkL0DT+L98k/E9e6P9zGyj9xLSQ/jvkwvk0u+D7n0qC/5hi1PjzDSr8DAKw+jGeeP9b/l77OI4Q/yb2OProx970dYBY/mFjKvgnYAT+G2i2/QqrrPs9GLj/iumG/DkzUPjuv1j6cdUQ/b6gsPuyypr6a7gw/O2yYP1lcqT+t2Z8/qxINPuaYvL9TBEA+Gykvv5WPJb+l4XY+T9mCP8veM79UFaM/PZrvvXZusz8GFCq+QGLxPpvZIr7E7Im/rb3+vz+mTj+n0C2+4rphvw5M1D4eohjAnHVEP5Ukwb6HlzI/z9prPnE9UD/8d3Q/es2QP9/O5j6oIks+4816vyNsGL+/qd++1Q0Pv0p5/75EnaQ/GKO5vqkYsz6jglc+H3AfPzarDT9mvi88MmAyvT3eR75jJ6S+T/7iPuK6Yb8OTNQ+O6/WPpx1RD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAI1Ey1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAJH7PQAAAADBy/S/AAAAAOL5hDwAAAAAu+XhPwAAAAB3Pr89AAAAAC5p5D8AAAAA94W0PAAAAAAJvvS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVh2tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIvr1DwAAAAA3fv8vwAAAAChi1S9AAAAAOEV6D8AAAAAweUdvAAAAABAi9s/AAAAAIXjij0AAAAAiA7avwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBbATYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJ8hU8AAAAAA9c2b8AAAAAQf7evAAAAAASYOI/AAAAAG6z5TwAAAAAYIXjPwAAAABmJsC9AAAAAJui/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3fkg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7HLKvQAAAABn2ee/AAAAAL4dkr0AAAAAR6vfPwAAAAC8KwI+AAAAAHfD7z8AAAAApz3XPAAAAADshPO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI2CPPcBU72MAWyUTegDjAF0lEdAqTEvmPo3aXV9lChoBkdAgtba+WWyDGgHTegDaAhHQKk0Y8FINEx1fZQoaAZHQJUEYCuEEkloB03oA2gIR0CpNaO/UONHdX2UKGgGR0CYs4Cpm29daAdN6ANoCEdAqTpRQzk6tHV9lChoBkdAl1sr6tT1kGgHTegDaAhHQKk/6+36Q/51fZQoaAZHQJKQkiQkondoB03oA2gIR0CpQ4nxz7uVdX2UKGgGR0CVzMUGVzIWaAdN6ANoCEdAqUTK0Sh8IHV9lChoBkdAmGaVd9lVcWgHTegDaAhHQKlJgz/p+tt1fZQoaAZHQJujwSSNfgJoB03oA2gIR0CpTwOB+WnkdX2UKGgGR0Cb7Ef1HvtuaAdN6ANoCEdAqVIZ4GD+SHV9lChoBkdAmaXFH4Glh2gHTegDaAhHQKlTV0wJw851fZQoaAZHQJnjwk6cRUZoB03oA2gIR0CpWBkc81XOdX2UKGgGR0CXOV/ag261aAdN6ANoCEdAqV2yXnhbW3V9lChoBkdAkqBRvvSc9WgHTegDaAhHQKlgd2kBS1p1fZQoaAZHQJj42po9LYhoB03oA2gIR0CpYVQTEit8dX2UKGgGR0CYSjt5UtI1aAdN6ANoCEdAqWSGpQ1rI3V9lChoBkdAeZm0D2alUWgHTegDaAhHQKlpJ1HOKO11fZQoaAZHQJalWNWEK3NoB03oA2gIR0Cpa+0SZjQRdX2UKGgGR0CUZWcRDkU9aAdN6ANoCEdAqWzJ0fYBeXV9lChoBkdAl6Ja4c3l0mgHTegDaAhHQKlwnppvgm91fZQoaAZHQJk9iPBBRhtoB03oA2gIR0Cpd/YyXUpedX2UKGgGR0CVc4WUKRdQaAdN6ANoCEdAqXtXzlLeynV9lChoBkdAlj7nSnccl2gHTegDaAhHQKl8Lf0Eov11fZQoaAZHQJYZb29L6DZoB03oA2gIR0Cpf5rGBFuvdX2UKGgGR0CWZSXKr7wbaAdN6ANoCEdAqYQ0cyWRinV9lChoBkdAlV0GbTc7AGgHTegDaAhHQKmG8fcvduZ1fZQoaAZHQJRvKOPvKEFoB03oA2gIR0Cph9E3S8aodX2UKGgGR0CWkwvUz9CNaAdN6ANoCEdAqYrt4Z/CqXV9lChoBkdAkj5CC8OCoWgHTegDaAhHQKmQaCNCJGh1fZQoaAZHQJGxV8/lhgFoB03oA2gIR0CplModuHerdX2UKGgGR0CS/TcAzYVZaAdN6ANoCEdAqZYqXrt3OnV9lChoBkdAhVrIGY8dP2gHTegDaAhHQKmZz9hqj8F1fZQoaAZHQJTSuh11W81oB03oA2gIR0Cpnml6Z6UrdX2UKGgGR0CJ9aax5cC6aAdN6ANoCEdAqaE3aWX1J3V9lChoBkdAlDHUvGp++mgHTegDaAhHQKmiFQZ4wAV1fZQoaAZHQJONxEXtShtoB03oA2gIR0CppSQVKwpwdX2UKGgGR0CUHlth/iHZaAdN6ANoCEdAqam6IcinpHV9lChoBkdAk6UQnx8UmGgHTegDaAhHQKms/3W4EwF1fZQoaAZHQJbArn6l+E1oB03oA2gIR0CprjutwJgLdX2UKGgGR0CU5OPMjeKsaAdN6ANoCEdAqbL2nKnvUnV9lChoBkdAmYW0SZjQRmgHTegDaAhHQKm4lqHGjsV1fZQoaAZHQJgMdTfixV1oB03oA2gIR0CpvCzFdcB2dX2UKGgGR0CaPkrBCUosaAdN6ANoCEdAqb1x+WnjyXV9lChoBkdAmIZlUlzEJmgHTegDaAhHQKnCPSOR1YB1fZQoaAZHQJvQ3hYNiH9oB03oA2gIR0Cpx4Edmxt6dX2UKGgGR0CZ4wB5HEuQaAdN6ANoCEdAqcqe1a4c3nV9lChoBkdAmE6cYZVGTmgHTegDaAhHQKnL4PUaybB1fZQoaAZHQJo3HyauwHJoB03oA2gIR0Cp0KzYEnstdX2UKGgGR0CWEYbVBlcyaAdN6ANoCEdAqdZD8zhxYXV9lChoBkdAm3GW+9Jz1mgHTegDaAhHQKnY/CQ9zOp1fZQoaAZHQJcNYTg2qDNoB03oA2gIR0Cp2dceKbazdX2UKGgGR0CbE3r3j+72aAdN6ANoCEdAqdzw6r/823V9lChoBkdAk+3bx7RfGGgHTegDaAhHQKnheA93bEh1fZQoaAZHQJrPCAqd6LRoB03oA2gIR0Cp5DCSaEzwdX2UKGgGR0Ca141dPci4aAdN6ANoCEdAqeUHgrH2iHV9lChoBkdAnStFMqSX+mgHTegDaAhHQKnoVcQAdXF1fZQoaAZHQJka7LaEi+toB03oA2gIR0Cp70RYigTRdX2UKGgGR0CX0+7sfJV9aAdN6ANoCEdAqfLlv2oNu3V9lChoBkdAmvIp/smfG2gHTegDaAhHQKnzvj6N2kl1fZQoaAZHQJherGZNO/NoB03oA2gIR0Cp9uqbz9S/dX2UKGgGR0CVVsKsMiKSaAdN6ANoCEdAqfvnb48EFHV9lChoBkdAl3f/X05EMWgHTegDaAhHQKn+oV5a/yp1fZQoaAZHQJjqW8Djin5oB03oA2gIR0Cp/31tfoicdX2UKGgGR0CZKBpfx+a0aAdN6ANoCEdAqgKSCnP3SXV9lChoBkdAmHS3EZR8+mgHTegDaAhHQKoH1MB6rvN1fZQoaAZHQJosXu1F6RhoB03oA2gIR0CqDAS+6Ae8dX2UKGgGR0CcSwseXAuaaAdN6ANoCEdAqg1ZRbbDdnV9lChoBkdAmUs78zhxYWgHTegDaAhHQKoRNxoZhrp1fZQoaAZHQJkE4KCxu89oB03oA2gIR0CqFbMKb8WLdX2UKGgGR0CbnVPKdQO4aAdN6ANoCEdAqhhty3kPtnV9lChoBkdAnB7TIq9XcWgHTegDaAhHQKoZRMMZxaR1fZQoaAZHQJkx6K4x1xNoB03oA2gIR0CqHE1BMSK4dX2UKGgGR0CcFLIhQm/naAdN6ANoCEdAqiDpOpKjBXV9lChoBkdAkwZOM2m52GgHTegDaAhHQKojvbh3qzJ1fZQoaAZHQI/TM0elsP9oB03oA2gIR0CqJRY1P3zudX2UKGgGR0CGi/VQyhzvaAdN6ANoCEdAqinKkTHsC3V9lChoBkdAlYRjLjghr2gHTegDaAhHQKovuHQhOgx1fZQoaAZHQJwcu7Xg9/1oB03oA2gIR0CqMqjxCpm3dX2UKGgGR0CWIJysS00FaAdN6ANoCEdAqjPrl/6O53V9lChoBkdAmcOA80UGmmgHTegDaAhHQKo49wiJO351fZQoaAZHQJPiTjHXEqFoB03oA2gIR0CqPo+gUUO/dX2UKGgGR0CUkcT/ACXAaAdN6ANoCEdAqkFPYYixFHV9lChoBkdAjbBISteUp2gHTegDaAhHQKpCcYnfEXN1fZQoaAZHQIhU/JPqLTBoB03oA2gIR0CqRxCVrylOdX2UKGgGR0CZL85byH2zaAdN6ANoCEdAqk1voxHoYHV9lChoBkdAmeYOXzDn/2gHTegDaAhHQKpQKjesPrh1fZQoaAZHQJbw6ThYNiJoB03oA2gIR0CqUQQGW2PUdX2UKGgGR0CbuwSsKb8WaAdN6ANoCEdAqlQbFId2gXV9lChoBkdAkHqrPIGQjmgHTdcCaAhHQKpYVuzhP0t1fZQoaAZHQJn/wkrwvxpoB03oA2gIR0CqWKqYqoZRdX2UKGgGR0CZMQXKbKA8aAdN6ANoCEdAqlw/t+kP+XV9lChoBkdAl2BmCROk+GgHTegDaAhHQKpfXQpnYg91fZQoaAZHQJkuG6GxlhBoB03oA2gIR0CqZZvGQ0XQdX2UKGgGR0CYClBoEjgRaAdN6ANoCEdAqmYf62v0RXV9lChoBkdAmQND9S/CZWgHTegDaAhHQKprLqnFYMh1fZQoaAZHQJohzsF+uvFoB03oA2gIR0CqbkUPQOWjdX2UKGgGR0CZzKuDBdleaAdN6ANoCEdAqnKx60IC2nV9lChoBkdAmHeK0QbuMWgHTegDaAhHQKpzA+fywwF1fZQoaAZHQJlOkc5sCT5oB03oA2gIR0CqdpU2tMfzdX2UKGgGR0CWu6RjjJdTaAdN6ANoCEdAqnmqyOaOP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7003be4bd86e877df7662418d13655f02d3b76258f6b2ec239648b00d9453a1b
|
3 |
+
size 1111300
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1891.380856445851, "std_reward": 76.03055833324913, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T17:16:32.902046"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e05bb8f737008759cfaaa9d914c6ffb8f121fc9619354deb8ed056c2f509fe1
|
3 |
+
size 2136
|