amentaphd commited on
Commit
8c229b0
·
verified ·
1 Parent(s): 248cf28

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-m
11
+ pipeline_tag: sentence-similarity
12
+ library_name: sentence-transformers
13
+ metrics:
14
+ - cosine_accuracy@1
15
+ - cosine_accuracy@3
16
+ - cosine_accuracy@5
17
+ - cosine_accuracy@10
18
+ - cosine_precision@1
19
+ - cosine_precision@3
20
+ - cosine_precision@5
21
+ - cosine_precision@10
22
+ - cosine_recall@1
23
+ - cosine_recall@3
24
+ - cosine_recall@5
25
+ - cosine_recall@10
26
+ - cosine_ndcg@10
27
+ - cosine_mrr@10
28
+ - cosine_map@100
29
+ model-index:
30
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
31
+ results:
32
+ - task:
33
+ type: information-retrieval
34
+ name: Information Retrieval
35
+ dataset:
36
+ name: Unknown
37
+ type: unknown
38
+ metrics:
39
+ - type: cosine_accuracy@1
40
+ value: 1.0
41
+ name: Cosine Accuracy@1
42
+ - type: cosine_accuracy@3
43
+ value: 1.0
44
+ name: Cosine Accuracy@3
45
+ - type: cosine_accuracy@5
46
+ value: 1.0
47
+ name: Cosine Accuracy@5
48
+ - type: cosine_accuracy@10
49
+ value: 1.0
50
+ name: Cosine Accuracy@10
51
+ - type: cosine_precision@1
52
+ value: 1.0
53
+ name: Cosine Precision@1
54
+ - type: cosine_precision@3
55
+ value: 0.3333333333333333
56
+ name: Cosine Precision@3
57
+ - type: cosine_precision@5
58
+ value: 0.2
59
+ name: Cosine Precision@5
60
+ - type: cosine_precision@10
61
+ value: 0.1
62
+ name: Cosine Precision@10
63
+ - type: cosine_recall@1
64
+ value: 1.0
65
+ name: Cosine Recall@1
66
+ - type: cosine_recall@3
67
+ value: 1.0
68
+ name: Cosine Recall@3
69
+ - type: cosine_recall@5
70
+ value: 1.0
71
+ name: Cosine Recall@5
72
+ - type: cosine_recall@10
73
+ value: 1.0
74
+ name: Cosine Recall@10
75
+ - type: cosine_ndcg@10
76
+ value: 1.0
77
+ name: Cosine Ndcg@10
78
+ - type: cosine_mrr@10
79
+ value: 1.0
80
+ name: Cosine Mrr@10
81
+ - type: cosine_map@100
82
+ value: 1.0
83
+ name: Cosine Map@100
84
+ ---
85
+
86
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
87
+
88
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
89
+
90
+ ## Model Details
91
+
92
+ ### Model Description
93
+ - **Model Type:** Sentence Transformer
94
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision fc74610d18462d218e312aa986ec5c8a75a98152 -->
95
+ - **Maximum Sequence Length:** 512 tokens
96
+ - **Output Dimensionality:** 768 dimensions
97
+ - **Similarity Function:** Cosine Similarity
98
+ <!-- - **Training Dataset:** Unknown -->
99
+ <!-- - **Language:** Unknown -->
100
+ <!-- - **License:** Unknown -->
101
+
102
+ ### Model Sources
103
+
104
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
105
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
106
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
107
+
108
+ ### Full Model Architecture
109
+
110
+ ```
111
+ SentenceTransformer(
112
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
113
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
114
+ (2): Normalize()
115
+ )
116
+ ```
117
+
118
+ ## Usage
119
+
120
+ ### Direct Usage (Sentence Transformers)
121
+
122
+ First install the Sentence Transformers library:
123
+
124
+ ```bash
125
+ pip install -U sentence-transformers
126
+ ```
127
+
128
+ Then you can load this model and run inference.
129
+ ```python
130
+ from sentence_transformers import SentenceTransformer
131
+
132
+ # Download from the 🤗 Hub
133
+ model = SentenceTransformer("sentence_transformers_model_id")
134
+ # Run inference
135
+ sentences = [
136
+ 'The weather is lovely today.',
137
+ "It's so sunny outside!",
138
+ 'He drove to the stadium.',
139
+ ]
140
+ embeddings = model.encode(sentences)
141
+ print(embeddings.shape)
142
+ # [3, 768]
143
+
144
+ # Get the similarity scores for the embeddings
145
+ similarities = model.similarity(embeddings, embeddings)
146
+ print(similarities.shape)
147
+ # [3, 3]
148
+ ```
149
+
150
+ <!--
151
+ ### Direct Usage (Transformers)
152
+
153
+ <details><summary>Click to see the direct usage in Transformers</summary>
154
+
155
+ </details>
156
+ -->
157
+
158
+ <!--
159
+ ### Downstream Usage (Sentence Transformers)
160
+
161
+ You can finetune this model on your own dataset.
162
+
163
+ <details><summary>Click to expand</summary>
164
+
165
+ </details>
166
+ -->
167
+
168
+ <!--
169
+ ### Out-of-Scope Use
170
+
171
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
172
+ -->
173
+
174
+ ## Evaluation
175
+
176
+ ### Metrics
177
+
178
+ #### Information Retrieval
179
+
180
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
181
+
182
+ | Metric | Value |
183
+ |:--------------------|:--------|
184
+ | cosine_accuracy@1 | 1.0 |
185
+ | cosine_accuracy@3 | 1.0 |
186
+ | cosine_accuracy@5 | 1.0 |
187
+ | cosine_accuracy@10 | 1.0 |
188
+ | cosine_precision@1 | 1.0 |
189
+ | cosine_precision@3 | 0.3333 |
190
+ | cosine_precision@5 | 0.2 |
191
+ | cosine_precision@10 | 0.1 |
192
+ | cosine_recall@1 | 1.0 |
193
+ | cosine_recall@3 | 1.0 |
194
+ | cosine_recall@5 | 1.0 |
195
+ | cosine_recall@10 | 1.0 |
196
+ | **cosine_ndcg@10** | **1.0** |
197
+ | cosine_mrr@10 | 1.0 |
198
+ | cosine_map@100 | 1.0 |
199
+
200
+ <!--
201
+ ## Bias, Risks and Limitations
202
+
203
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
204
+ -->
205
+
206
+ <!--
207
+ ### Recommendations
208
+
209
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
210
+ -->
211
+
212
+ ## Training Details
213
+
214
+ ### Training Dataset
215
+
216
+ #### Unnamed Dataset
217
+
218
+ * Size: 1 training samples
219
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
220
+ * Approximate statistics based on the first 1 samples:
221
+ | | sentence_0 | sentence_1 |
222
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
223
+ | type | string | string |
224
+ | details | <ul><li>min: 27 tokens</li><li>mean: 27.0 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 65 tokens</li><li>mean: 65.0 tokens</li><li>max: 65 tokens</li></ul> |
225
+ * Samples:
226
+ | sentence_0 | sentence_1 |
227
+ |:------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
228
+ | <code>QUESTION #1: What action must potential registrants take if they fail to reach an agreement with previous registrants?</code> | <code>5.<br><br>If there is failure to reach such an agreement, the potential registrant(s) shall inform the Agency and the previous registrant(s) thereof at the earliest one month after receipt, from the Agency, of the name and address of the previous registrant(s).<br><br>6.</code> |
229
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
230
+ ```json
231
+ {
232
+ "loss": "MultipleNegativesRankingLoss",
233
+ "matryoshka_dims": [
234
+ 768,
235
+ 512,
236
+ 256,
237
+ 128,
238
+ 64
239
+ ],
240
+ "matryoshka_weights": [
241
+ 1,
242
+ 1,
243
+ 1,
244
+ 1,
245
+ 1
246
+ ],
247
+ "n_dims_per_step": -1
248
+ }
249
+ ```
250
+
251
+ ### Training Hyperparameters
252
+ #### Non-Default Hyperparameters
253
+
254
+ - `eval_strategy`: steps
255
+ - `per_device_train_batch_size`: 2
256
+ - `per_device_eval_batch_size`: 2
257
+ - `num_train_epochs`: 1
258
+ - `multi_dataset_batch_sampler`: round_robin
259
+
260
+ #### All Hyperparameters
261
+ <details><summary>Click to expand</summary>
262
+
263
+ - `overwrite_output_dir`: False
264
+ - `do_predict`: False
265
+ - `eval_strategy`: steps
266
+ - `prediction_loss_only`: True
267
+ - `per_device_train_batch_size`: 2
268
+ - `per_device_eval_batch_size`: 2
269
+ - `per_gpu_train_batch_size`: None
270
+ - `per_gpu_eval_batch_size`: None
271
+ - `gradient_accumulation_steps`: 1
272
+ - `eval_accumulation_steps`: None
273
+ - `torch_empty_cache_steps`: None
274
+ - `learning_rate`: 5e-05
275
+ - `weight_decay`: 0.0
276
+ - `adam_beta1`: 0.9
277
+ - `adam_beta2`: 0.999
278
+ - `adam_epsilon`: 1e-08
279
+ - `max_grad_norm`: 1
280
+ - `num_train_epochs`: 1
281
+ - `max_steps`: -1
282
+ - `lr_scheduler_type`: linear
283
+ - `lr_scheduler_kwargs`: {}
284
+ - `warmup_ratio`: 0.0
285
+ - `warmup_steps`: 0
286
+ - `log_level`: passive
287
+ - `log_level_replica`: warning
288
+ - `log_on_each_node`: True
289
+ - `logging_nan_inf_filter`: True
290
+ - `save_safetensors`: True
291
+ - `save_on_each_node`: False
292
+ - `save_only_model`: False
293
+ - `restore_callback_states_from_checkpoint`: False
294
+ - `no_cuda`: False
295
+ - `use_cpu`: False
296
+ - `use_mps_device`: False
297
+ - `seed`: 42
298
+ - `data_seed`: None
299
+ - `jit_mode_eval`: False
300
+ - `use_ipex`: False
301
+ - `bf16`: False
302
+ - `fp16`: False
303
+ - `fp16_opt_level`: O1
304
+ - `half_precision_backend`: auto
305
+ - `bf16_full_eval`: False
306
+ - `fp16_full_eval`: False
307
+ - `tf32`: None
308
+ - `local_rank`: 0
309
+ - `ddp_backend`: None
310
+ - `tpu_num_cores`: None
311
+ - `tpu_metrics_debug`: False
312
+ - `debug`: []
313
+ - `dataloader_drop_last`: False
314
+ - `dataloader_num_workers`: 0
315
+ - `dataloader_prefetch_factor`: None
316
+ - `past_index`: -1
317
+ - `disable_tqdm`: False
318
+ - `remove_unused_columns`: True
319
+ - `label_names`: None
320
+ - `load_best_model_at_end`: False
321
+ - `ignore_data_skip`: False
322
+ - `fsdp`: []
323
+ - `fsdp_min_num_params`: 0
324
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
325
+ - `fsdp_transformer_layer_cls_to_wrap`: None
326
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
327
+ - `deepspeed`: None
328
+ - `label_smoothing_factor`: 0.0
329
+ - `optim`: adamw_torch
330
+ - `optim_args`: None
331
+ - `adafactor`: False
332
+ - `group_by_length`: False
333
+ - `length_column_name`: length
334
+ - `ddp_find_unused_parameters`: None
335
+ - `ddp_bucket_cap_mb`: None
336
+ - `ddp_broadcast_buffers`: False
337
+ - `dataloader_pin_memory`: True
338
+ - `dataloader_persistent_workers`: False
339
+ - `skip_memory_metrics`: True
340
+ - `use_legacy_prediction_loop`: False
341
+ - `push_to_hub`: False
342
+ - `resume_from_checkpoint`: None
343
+ - `hub_model_id`: None
344
+ - `hub_strategy`: every_save
345
+ - `hub_private_repo`: None
346
+ - `hub_always_push`: False
347
+ - `gradient_checkpointing`: False
348
+ - `gradient_checkpointing_kwargs`: None
349
+ - `include_inputs_for_metrics`: False
350
+ - `include_for_metrics`: []
351
+ - `eval_do_concat_batches`: True
352
+ - `fp16_backend`: auto
353
+ - `push_to_hub_model_id`: None
354
+ - `push_to_hub_organization`: None
355
+ - `mp_parameters`:
356
+ - `auto_find_batch_size`: False
357
+ - `full_determinism`: False
358
+ - `torchdynamo`: None
359
+ - `ray_scope`: last
360
+ - `ddp_timeout`: 1800
361
+ - `torch_compile`: False
362
+ - `torch_compile_backend`: None
363
+ - `torch_compile_mode`: None
364
+ - `dispatch_batches`: None
365
+ - `split_batches`: None
366
+ - `include_tokens_per_second`: False
367
+ - `include_num_input_tokens_seen`: False
368
+ - `neftune_noise_alpha`: None
369
+ - `optim_target_modules`: None
370
+ - `batch_eval_metrics`: False
371
+ - `eval_on_start`: False
372
+ - `use_liger_kernel`: False
373
+ - `eval_use_gather_object`: False
374
+ - `average_tokens_across_devices`: False
375
+ - `prompts`: None
376
+ - `batch_sampler`: batch_sampler
377
+ - `multi_dataset_batch_sampler`: round_robin
378
+
379
+ </details>
380
+
381
+ ### Training Logs
382
+ | Epoch | Step | cosine_ndcg@10 |
383
+ |:-----:|:----:|:--------------:|
384
+ | 1.0 | 1 | 1.0 |
385
+
386
+
387
+ ### Framework Versions
388
+ - Python: 3.12.7
389
+ - Sentence Transformers: 3.4.1
390
+ - Transformers: 4.49.0
391
+ - PyTorch: 2.6.0+cpu
392
+ - Accelerate: 0.26.0
393
+ - Datasets: 3.4.1
394
+ - Tokenizers: 0.21.1
395
+
396
+ ## Citation
397
+
398
+ ### BibTeX
399
+
400
+ #### Sentence Transformers
401
+ ```bibtex
402
+ @inproceedings{reimers-2019-sentence-bert,
403
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
404
+ author = "Reimers, Nils and Gurevych, Iryna",
405
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
406
+ month = "11",
407
+ year = "2019",
408
+ publisher = "Association for Computational Linguistics",
409
+ url = "https://arxiv.org/abs/1908.10084",
410
+ }
411
+ ```
412
+
413
+ #### MatryoshkaLoss
414
+ ```bibtex
415
+ @misc{kusupati2024matryoshka,
416
+ title={Matryoshka Representation Learning},
417
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
418
+ year={2024},
419
+ eprint={2205.13147},
420
+ archivePrefix={arXiv},
421
+ primaryClass={cs.LG}
422
+ }
423
+ ```
424
+
425
+ #### MultipleNegativesRankingLoss
426
+ ```bibtex
427
+ @misc{henderson2017efficient,
428
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
429
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
430
+ year={2017},
431
+ eprint={1705.00652},
432
+ archivePrefix={arXiv},
433
+ primaryClass={cs.CL}
434
+ }
435
+ ```
436
+
437
+ <!--
438
+ ## Glossary
439
+
440
+ *Clearly define terms in order to be accessible across audiences.*
441
+ -->
442
+
443
+ <!--
444
+ ## Model Card Authors
445
+
446
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
447
+ -->
448
+
449
+ <!--
450
+ ## Model Card Contact
451
+
452
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
453
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cpu"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ 1.0,1,1.0,1.0,1.0,1.0,1.0,1.0,0.3333333333333333,1.0,0.2,1.0,0.1,1.0,1.0,1.0,1.0
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:059905097862be303c51fc88d6976d27e3006ac59786cc750478043c4eb91b3a
3
+ size 435588776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff