|
from abc import abstractmethod |
|
from typing import Any, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ....modules.distributions.distributions import DiagonalGaussianDistribution |
|
|
|
|
|
class AbstractRegularizer(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: |
|
raise NotImplementedError() |
|
|
|
@abstractmethod |
|
def get_trainable_parameters(self) -> Any: |
|
raise NotImplementedError() |
|
|
|
|
|
class DiagonalGaussianRegularizer(AbstractRegularizer): |
|
def __init__(self, sample: bool = True): |
|
super().__init__() |
|
self.sample = sample |
|
|
|
def get_trainable_parameters(self) -> Any: |
|
yield from () |
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: |
|
log = dict() |
|
posterior = DiagonalGaussianDistribution(z) |
|
if self.sample: |
|
z = posterior.sample() |
|
else: |
|
z = posterior.mode() |
|
kl_loss = posterior.kl() |
|
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] |
|
log["kl_loss"] = kl_loss |
|
return z, log |
|
|
|
|
|
def measure_perplexity(predicted_indices, num_centroids): |
|
|
|
|
|
encodings = ( |
|
F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids) |
|
) |
|
avg_probs = encodings.mean(0) |
|
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() |
|
cluster_use = torch.sum(avg_probs > 0) |
|
return perplexity, cluster_use |
|
|