|
import torch |
|
import numpy as np |
|
|
|
|
|
class AbstractDistribution: |
|
def sample(self): |
|
raise NotImplementedError() |
|
|
|
def mode(self): |
|
raise NotImplementedError() |
|
|
|
|
|
class DiracDistribution(AbstractDistribution): |
|
def __init__(self, value): |
|
self.value = value |
|
|
|
def sample(self): |
|
return self.value |
|
|
|
def mode(self): |
|
return self.value |
|
|
|
|
|
class DiagonalGaussianDistribution(object): |
|
def __init__(self, parameters, deterministic=False): |
|
self.parameters = parameters |
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) |
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) |
|
self.deterministic = deterministic |
|
self.std = torch.exp(0.5 * self.logvar) |
|
self.var = torch.exp(self.logvar) |
|
if self.deterministic: |
|
self.var = self.std = torch.zeros_like(self.mean).to( |
|
device=self.parameters.device |
|
) |
|
|
|
def sample(self): |
|
x = self.mean + self.std * torch.randn(self.mean.shape).to( |
|
device=self.parameters.device |
|
) |
|
return x |
|
|
|
def kl(self, other=None): |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
else: |
|
if other is None: |
|
return 0.5 * torch.sum( |
|
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, |
|
dim=[1, 2, 3], |
|
) |
|
else: |
|
return 0.5 * torch.sum( |
|
torch.pow(self.mean - other.mean, 2) / other.var |
|
+ self.var / other.var |
|
- 1.0 |
|
- self.logvar |
|
+ other.logvar, |
|
dim=[1, 2, 3], |
|
) |
|
|
|
def nll(self, sample, dims=[1, 2, 3]): |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
logtwopi = np.log(2.0 * np.pi) |
|
return 0.5 * torch.sum( |
|
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, |
|
dim=dims, |
|
) |
|
|
|
def mode(self): |
|
return self.mean |
|
|
|
|
|
def normal_kl(mean1, logvar1, mean2, logvar2): |
|
""" |
|
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 |
|
Compute the KL divergence between two gaussians. |
|
Shapes are automatically broadcasted, so batches can be compared to |
|
scalars, among other use cases. |
|
""" |
|
tensor = None |
|
for obj in (mean1, logvar1, mean2, logvar2): |
|
if isinstance(obj, torch.Tensor): |
|
tensor = obj |
|
break |
|
assert tensor is not None, "at least one argument must be a Tensor" |
|
|
|
|
|
|
|
logvar1, logvar2 = [ |
|
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) |
|
for x in (logvar1, logvar2) |
|
] |
|
|
|
return 0.5 * ( |
|
-1.0 |
|
+ logvar2 |
|
- logvar1 |
|
+ torch.exp(logvar1 - logvar2) |
|
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2) |
|
) |
|
|