|
from typing import Any, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init |
|
from taming.modules.losses.lpips import LPIPS |
|
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss |
|
|
|
from ....util import default, instantiate_from_config |
|
|
|
|
|
def adopt_weight(weight, global_step, threshold=0, value=0.0): |
|
if global_step < threshold: |
|
weight = value |
|
return weight |
|
|
|
|
|
class LatentLPIPS(nn.Module): |
|
def __init__( |
|
self, |
|
decoder_config, |
|
perceptual_weight=1.0, |
|
latent_weight=1.0, |
|
scale_input_to_tgt_size=False, |
|
scale_tgt_to_input_size=False, |
|
perceptual_weight_on_inputs=0.0, |
|
): |
|
super().__init__() |
|
self.scale_input_to_tgt_size = scale_input_to_tgt_size |
|
self.scale_tgt_to_input_size = scale_tgt_to_input_size |
|
self.init_decoder(decoder_config) |
|
self.perceptual_loss = LPIPS().eval() |
|
self.perceptual_weight = perceptual_weight |
|
self.latent_weight = latent_weight |
|
self.perceptual_weight_on_inputs = perceptual_weight_on_inputs |
|
|
|
def init_decoder(self, config): |
|
self.decoder = instantiate_from_config(config) |
|
if hasattr(self.decoder, "encoder"): |
|
del self.decoder.encoder |
|
|
|
def forward(self, latent_inputs, latent_predictions, image_inputs, split="train"): |
|
log = dict() |
|
loss = (latent_inputs - latent_predictions) ** 2 |
|
log[f"{split}/latent_l2_loss"] = loss.mean().detach() |
|
image_reconstructions = None |
|
if self.perceptual_weight > 0.0: |
|
image_reconstructions = self.decoder.decode(latent_predictions) |
|
image_targets = self.decoder.decode(latent_inputs) |
|
perceptual_loss = self.perceptual_loss( |
|
image_targets.contiguous(), image_reconstructions.contiguous() |
|
) |
|
loss = ( |
|
self.latent_weight * loss.mean() |
|
+ self.perceptual_weight * perceptual_loss.mean() |
|
) |
|
log[f"{split}/perceptual_loss"] = perceptual_loss.mean().detach() |
|
|
|
if self.perceptual_weight_on_inputs > 0.0: |
|
image_reconstructions = default( |
|
image_reconstructions, self.decoder.decode(latent_predictions) |
|
) |
|
if self.scale_input_to_tgt_size: |
|
image_inputs = torch.nn.functional.interpolate( |
|
image_inputs, |
|
image_reconstructions.shape[2:], |
|
mode="bicubic", |
|
antialias=True, |
|
) |
|
elif self.scale_tgt_to_input_size: |
|
image_reconstructions = torch.nn.functional.interpolate( |
|
image_reconstructions, |
|
image_inputs.shape[2:], |
|
mode="bicubic", |
|
antialias=True, |
|
) |
|
|
|
perceptual_loss2 = self.perceptual_loss( |
|
image_inputs.contiguous(), image_reconstructions.contiguous() |
|
) |
|
loss = loss + self.perceptual_weight_on_inputs * perceptual_loss2.mean() |
|
log[f"{split}/perceptual_loss_on_inputs"] = perceptual_loss2.mean().detach() |
|
return loss, log |
|
|
|
|
|
class GeneralLPIPSWithDiscriminator(nn.Module): |
|
def __init__( |
|
self, |
|
disc_start: int, |
|
logvar_init: float = 0.0, |
|
pixelloss_weight=1.0, |
|
disc_num_layers: int = 3, |
|
disc_in_channels: int = 3, |
|
disc_factor: float = 1.0, |
|
disc_weight: float = 1.0, |
|
perceptual_weight: float = 1.0, |
|
disc_loss: str = "hinge", |
|
scale_input_to_tgt_size: bool = False, |
|
dims: int = 2, |
|
learn_logvar: bool = False, |
|
regularization_weights: Union[None, dict] = None, |
|
): |
|
super().__init__() |
|
self.dims = dims |
|
if self.dims > 2: |
|
print( |
|
f"running with dims={dims}. This means that for perceptual loss calculation, " |
|
f"the LPIPS loss will be applied to each frame independently. " |
|
) |
|
self.scale_input_to_tgt_size = scale_input_to_tgt_size |
|
assert disc_loss in ["hinge", "vanilla"] |
|
self.pixel_weight = pixelloss_weight |
|
self.perceptual_loss = LPIPS().eval() |
|
self.perceptual_weight = perceptual_weight |
|
|
|
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) |
|
self.learn_logvar = learn_logvar |
|
|
|
self.discriminator = NLayerDiscriminator( |
|
input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=False |
|
).apply(weights_init) |
|
self.discriminator_iter_start = disc_start |
|
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss |
|
self.disc_factor = disc_factor |
|
self.discriminator_weight = disc_weight |
|
self.regularization_weights = default(regularization_weights, {}) |
|
|
|
def get_trainable_parameters(self) -> Any: |
|
return self.discriminator.parameters() |
|
|
|
def get_trainable_autoencoder_parameters(self) -> Any: |
|
if self.learn_logvar: |
|
yield self.logvar |
|
yield from () |
|
|
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): |
|
if last_layer is not None: |
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] |
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] |
|
else: |
|
nll_grads = torch.autograd.grad( |
|
nll_loss, self.last_layer[0], retain_graph=True |
|
)[0] |
|
g_grads = torch.autograd.grad( |
|
g_loss, self.last_layer[0], retain_graph=True |
|
)[0] |
|
|
|
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) |
|
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() |
|
d_weight = d_weight * self.discriminator_weight |
|
return d_weight |
|
|
|
def forward( |
|
self, |
|
regularization_log, |
|
inputs, |
|
reconstructions, |
|
optimizer_idx, |
|
global_step, |
|
last_layer=None, |
|
split="train", |
|
weights=None, |
|
): |
|
if self.scale_input_to_tgt_size: |
|
inputs = torch.nn.functional.interpolate( |
|
inputs, reconstructions.shape[2:], mode="bicubic", antialias=True |
|
) |
|
|
|
if self.dims > 2: |
|
inputs, reconstructions = map( |
|
lambda x: rearrange(x, "b c t h w -> (b t) c h w"), |
|
(inputs, reconstructions), |
|
) |
|
|
|
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) |
|
if self.perceptual_weight > 0: |
|
p_loss = self.perceptual_loss( |
|
inputs.contiguous(), reconstructions.contiguous() |
|
) |
|
rec_loss = rec_loss + self.perceptual_weight * p_loss |
|
|
|
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar |
|
weighted_nll_loss = nll_loss |
|
if weights is not None: |
|
weighted_nll_loss = weights * nll_loss |
|
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] |
|
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] |
|
|
|
|
|
if optimizer_idx == 0: |
|
|
|
logits_fake = self.discriminator(reconstructions.contiguous()) |
|
g_loss = -torch.mean(logits_fake) |
|
|
|
if self.disc_factor > 0.0: |
|
try: |
|
d_weight = self.calculate_adaptive_weight( |
|
nll_loss, g_loss, last_layer=last_layer |
|
) |
|
except RuntimeError: |
|
assert not self.training |
|
d_weight = torch.tensor(0.0) |
|
else: |
|
d_weight = torch.tensor(0.0) |
|
|
|
disc_factor = adopt_weight( |
|
self.disc_factor, global_step, threshold=self.discriminator_iter_start |
|
) |
|
loss = weighted_nll_loss + d_weight * disc_factor * g_loss |
|
log = dict() |
|
for k in regularization_log: |
|
if k in self.regularization_weights: |
|
loss = loss + self.regularization_weights[k] * regularization_log[k] |
|
log[f"{split}/{k}"] = regularization_log[k].detach().mean() |
|
|
|
log.update( |
|
{ |
|
"{}/total_loss".format(split): loss.clone().detach().mean(), |
|
"{}/logvar".format(split): self.logvar.detach(), |
|
"{}/nll_loss".format(split): nll_loss.detach().mean(), |
|
"{}/rec_loss".format(split): rec_loss.detach().mean(), |
|
"{}/d_weight".format(split): d_weight.detach(), |
|
"{}/disc_factor".format(split): torch.tensor(disc_factor), |
|
"{}/g_loss".format(split): g_loss.detach().mean(), |
|
} |
|
) |
|
|
|
return loss, log |
|
|
|
if optimizer_idx == 1: |
|
|
|
logits_real = self.discriminator(inputs.contiguous().detach()) |
|
logits_fake = self.discriminator(reconstructions.contiguous().detach()) |
|
|
|
disc_factor = adopt_weight( |
|
self.disc_factor, global_step, threshold=self.discriminator_iter_start |
|
) |
|
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) |
|
|
|
log = { |
|
"{}/disc_loss".format(split): d_loss.clone().detach().mean(), |
|
"{}/logits_real".format(split): logits_real.detach().mean(), |
|
"{}/logits_fake".format(split): logits_fake.detach().mean(), |
|
} |
|
return d_loss, log |
|
|