|
import argparse |
|
import os |
|
from omegaconf import OmegaConf |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
import glob |
|
import pickle |
|
from tqdm import tqdm |
|
import copy |
|
|
|
from musetalk.utils.utils import get_file_type,get_video_fps,datagen |
|
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder |
|
from musetalk.utils.blending import get_image |
|
from musetalk.utils.utils import load_all_model |
|
import shutil |
|
|
|
|
|
audio_processor,vae,unet,pe = load_all_model() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
timesteps = torch.tensor([0], device=device) |
|
|
|
@torch.no_grad() |
|
def main(args): |
|
inference_config = OmegaConf.load(args.inference_config) |
|
print(inference_config) |
|
for task_id in inference_config: |
|
video_path = inference_config[task_id]["video_path"] |
|
audio_path = inference_config[task_id]["audio_path"] |
|
bbox_shift = inference_config[task_id].get("bbox_shift", args.bbox_shift) |
|
|
|
input_basename = os.path.basename(video_path).split('.')[0] |
|
audio_basename = os.path.basename(audio_path).split('.')[0] |
|
output_basename = f"{input_basename}_{audio_basename}" |
|
result_img_save_path = os.path.join(args.result_dir, output_basename) |
|
crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") |
|
os.makedirs(result_img_save_path,exist_ok =True) |
|
|
|
if args.output_vid_name=="": |
|
output_vid_name = os.path.join(args.result_dir, output_basename+".mp4") |
|
else: |
|
output_vid_name = os.path.join(args.result_dir, args.output_vid_name) |
|
|
|
if get_file_type(video_path)=="video": |
|
save_dir_full = os.path.join(args.result_dir, input_basename) |
|
os.makedirs(save_dir_full,exist_ok = True) |
|
cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png" |
|
os.system(cmd) |
|
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) |
|
fps = get_video_fps(video_path) |
|
else: |
|
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) |
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) |
|
fps = args.fps |
|
|
|
|
|
whisper_feature = audio_processor.audio2feat(audio_path) |
|
whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) |
|
|
|
if os.path.exists(crop_coord_save_path) and args.use_saved_coord: |
|
print("using extracted coordinates") |
|
with open(crop_coord_save_path,'rb') as f: |
|
coord_list = pickle.load(f) |
|
frame_list = read_imgs(input_img_list) |
|
else: |
|
print("extracting landmarks...time consuming") |
|
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) |
|
with open(crop_coord_save_path, 'wb') as f: |
|
pickle.dump(coord_list, f) |
|
|
|
i = 0 |
|
input_latent_list = [] |
|
for bbox, frame in zip(coord_list, frame_list): |
|
if bbox == coord_placeholder: |
|
continue |
|
x1, y1, x2, y2 = bbox |
|
crop_frame = frame[y1:y2, x1:x2] |
|
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) |
|
latents = vae.get_latents_for_unet(crop_frame) |
|
input_latent_list.append(latents) |
|
|
|
|
|
frame_list_cycle = frame_list + frame_list[::-1] |
|
coord_list_cycle = coord_list + coord_list[::-1] |
|
input_latent_list_cycle = input_latent_list + input_latent_list[::-1] |
|
|
|
print("start inference") |
|
video_num = len(whisper_chunks) |
|
batch_size = args.batch_size |
|
gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size) |
|
res_frame_list = [] |
|
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): |
|
|
|
tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch] |
|
audio_feature_batch = torch.stack(tensor_list).to(unet.device) |
|
audio_feature_batch = pe(audio_feature_batch) |
|
|
|
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample |
|
recon = vae.decode_latents(pred_latents) |
|
for res_frame in recon: |
|
res_frame_list.append(res_frame) |
|
|
|
|
|
print("pad talking image to original video") |
|
for i, res_frame in enumerate(tqdm(res_frame_list)): |
|
bbox = coord_list_cycle[i%(len(coord_list_cycle))] |
|
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) |
|
x1, y1, x2, y2 = bbox |
|
try: |
|
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) |
|
except: |
|
|
|
continue |
|
|
|
combine_frame = get_image(ori_frame,res_frame,bbox) |
|
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame) |
|
|
|
cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 temp.mp4" |
|
print(cmd_img2video) |
|
os.system(cmd_img2video) |
|
|
|
cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i temp.mp4 {output_vid_name}" |
|
print(cmd_combine_audio) |
|
os.system(cmd_combine_audio) |
|
|
|
os.remove("temp.mp4") |
|
shutil.rmtree(result_img_save_path) |
|
print(f"result is save to {output_vid_name}") |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--inference_config", type=str, default="configs/inference/test_img.yaml") |
|
parser.add_argument("--bbox_shift", type=int, default=0) |
|
parser.add_argument("--result_dir", default='./results', help="path to output") |
|
|
|
parser.add_argument("--fps", type=int, default=25) |
|
parser.add_argument("--batch_size", type=int, default=8) |
|
parser.add_argument("--output_vid_name", type=str,default='') |
|
parser.add_argument("--use_saved_coord", |
|
action="store_true", |
|
help='use saved coordinate to save time') |
|
|
|
|
|
args = parser.parse_args() |
|
main(args) |
|
|