|
import torch |
|
import torch.nn as nn |
|
import math |
|
import json |
|
|
|
from diffusers import UNet2DConditionModel |
|
import sys |
|
import time |
|
import numpy as np |
|
import os |
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model=384, max_len=5000): |
|
super(PositionalEncoding, self).__init__() |
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
b, seq_len, d_model = x.size() |
|
pe = self.pe[:, :seq_len, :] |
|
x = x + pe.to(x.device) |
|
return x |
|
|
|
class UNet(): |
|
def __init__(self, |
|
unet_config, |
|
model_path, |
|
use_float16=False, |
|
): |
|
with open(unet_config, 'r') as f: |
|
unet_config = json.load(f) |
|
self.model = UNet2DConditionModel(**unet_config) |
|
self.pe = PositionalEncoding(d_model=384) |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.weights = torch.load(model_path) if torch.cuda.is_available() else torch.load(model_path, map_location=self.device) |
|
self.model.load_state_dict(self.weights) |
|
if use_float16: |
|
self.model = self.model.half() |
|
self.model.to(self.device) |
|
|
|
if __name__ == "__main__": |
|
unet = UNet() |