File size: 1,431 Bytes
9d8126f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: apache-2.0
datasets:
- imagenet-1k
metrics:
- accuracy
tags:
- RyzenAI
- vision
- classification
- pytorch
---
# ResNet-50 v1.5
Quantized ResNet model that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/en/latest/).
## Model description
ResNet (Residual Network) was first introduced in the paper Deep Residual Learning for Image Recognition by He et al.
This model is ResNet50 v1.5 from [torchvision](https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html).
## How to use
### Installation
Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI.
Run the following script to install pre-requisites for this model.
```bash
pip install -r requirements.txt
```
### Data Preparation
Follow [PyTorch Example](https://github.com/pytorch/examples/blob/main/imagenet/README.md#requirements) to prepare dataset.
### Model Evaluation
```python
python eval_onnx.py --onnx_model ResNet_int.onnx --ipu --provider_config Path\To\vaip_config.json --data_dir /Path/To/Your/Dataset
```
### Performance
|Metric |Accuracy on IPU|
| :----: | :----: |
|Top1/Top5| 76.17% / 92.86%|
```bibtex
@article{He2015,
author={Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
title={Deep Residual Learning for Image Recognition},
journal={arXiv preprint arXiv:1512.03385},
year={2015}
}
``` |