nickfraser
commited on
Commit
•
eb5a5f6
1
Parent(s):
d67ece3
[math_model/test] Added "QOp" implementation and basic tests.
Browse files- math_model.py +69 -11
- test_quant_conv2d.py +34 -0
- test_quant_linear.py +31 -0
math_model.py
CHANGED
@@ -14,11 +14,11 @@ def dequantize(tensor, scale, zero_point):
|
|
14 |
|
15 |
|
16 |
class QuantLinear(nn.Module):
|
17 |
-
def __init__(self, quant_param):
|
18 |
super().__init__()
|
19 |
mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape'])
|
20 |
self.register_buffer('mul_factor', mul_factor)
|
21 |
-
self.linear = nn.Linear(
|
22 |
weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape'])
|
23 |
weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape'])
|
24 |
input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape'])
|
@@ -28,10 +28,9 @@ class QuantLinear(nn.Module):
|
|
28 |
self.register_buffer('input_scale', input_scale)
|
29 |
self.register_buffer('input_zp', input_zp)
|
30 |
|
31 |
-
|
|
|
32 |
scaled_x = x * self.mul_factor
|
33 |
-
# With an integer conv kernel, if the weight zero point is not zero,
|
34 |
-
# it is required an extra input channel that is equal to the per-channel zero point of the weights
|
35 |
quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True)
|
36 |
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False)
|
37 |
dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp)
|
@@ -39,12 +38,37 @@ class QuantLinear(nn.Module):
|
|
39 |
out = torch.nn.functional.linear(dequantized_input, dequantized_weight, self.linear.bias)
|
40 |
return out
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
class QuantConv2d(nn.Module):
|
43 |
-
def __init__(self, quant_param):
|
44 |
super().__init__()
|
45 |
mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape'])
|
46 |
self.register_buffer('mul_factor', mul_factor)
|
47 |
-
self.conv2d = nn.Conv2d(
|
48 |
weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape'])
|
49 |
weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape'])
|
50 |
input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape'])
|
@@ -54,13 +78,47 @@ class QuantConv2d(nn.Module):
|
|
54 |
self.register_buffer('input_scale', input_scale)
|
55 |
self.register_buffer('input_zp', input_zp)
|
56 |
|
57 |
-
|
|
|
58 |
scaled_x = x * self.mul_factor
|
59 |
-
|
60 |
-
# it is required an extra input channel that is equal to the per-channel zero point of the weights
|
61 |
-
quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True)
|
62 |
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False)
|
63 |
dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp)
|
64 |
dequantized_input = dequantize(quant_input, self.input_scale, self.input_zp)
|
65 |
out = torch.nn.functional.conv2d(dequantized_input, dequantized_weight, self.conv2d.bias)
|
66 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
class QuantLinear(nn.Module):
|
17 |
+
def __init__(self, in_ch, out_ch, quant_param):
|
18 |
super().__init__()
|
19 |
mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape'])
|
20 |
self.register_buffer('mul_factor', mul_factor)
|
21 |
+
self.linear = nn.Linear(in_ch, out_ch)
|
22 |
weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape'])
|
23 |
weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape'])
|
24 |
input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape'])
|
|
|
28 |
self.register_buffer('input_scale', input_scale)
|
29 |
self.register_buffer('input_zp', input_zp)
|
30 |
|
31 |
+
# I.e., "fake quantization"
|
32 |
+
def qdq_forward(self, x):
|
33 |
scaled_x = x * self.mul_factor
|
|
|
|
|
34 |
quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True)
|
35 |
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False)
|
36 |
dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp)
|
|
|
38 |
out = torch.nn.functional.linear(dequantized_input, dequantized_weight, self.linear.bias)
|
39 |
return out
|
40 |
|
41 |
+
# Accelerated version
|
42 |
+
def qop_forward(self, x):
|
43 |
+
# With an integer linear kernel, if the weight zero point is not zero,
|
44 |
+
# A correction term must be calculated to correct the output.
|
45 |
+
# The correction term calculated as follows:
|
46 |
+
# - sum the input tensor across the dot-product dimentions: (e.g., `torch.sum(quant_input, dim=-1)`)
|
47 |
+
# - multiply this sum with every weight zero-point (e.g., `torch.sum(quant_input, dim=-1) * self.weight_zp`
|
48 |
+
# - Subtract from previous output (e.g., `quant_output -= torch.sum(quant_input, dim=-1) * self.weight_zp`)
|
49 |
+
# - All other code is just to make sure the broadcasting semantics work correctly
|
50 |
+
scaled_x = x * self.mul_factor
|
51 |
+
quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True).to(torch.uint8)
|
52 |
+
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
53 |
+
quant_output = torch.nn.functional.linear(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.linear quantizing the output to int8
|
54 |
+
correction = torch.sum(quant_input, dim=-1).to(torch.int32).unsqueeze(-1) * (-self.weight_zp).to(torch.uint8).view([1]*(quant_input.ndim-1) + [self.weight_zp.nelement()]) # Correct for weight zero-point
|
55 |
+
quant_output = quant_output + correction
|
56 |
+
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1]*(quant_output.ndim-1) + [(self.weight_scale * self.input_scale).nelement()]), 0.0)
|
57 |
+
output += self.linear.bias
|
58 |
+
return output
|
59 |
+
|
60 |
+
def forward(self, x, qop=False):
|
61 |
+
if qop:
|
62 |
+
return self.qop_forward(x)
|
63 |
+
else:
|
64 |
+
return self.qdq_forward(x)
|
65 |
+
|
66 |
class QuantConv2d(nn.Module):
|
67 |
+
def __init__(self, in_ch, out_ch, kernel_size, quant_param):
|
68 |
super().__init__()
|
69 |
mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape'])
|
70 |
self.register_buffer('mul_factor', mul_factor)
|
71 |
+
self.conv2d = nn.Conv2d(in_ch, out_ch, kernel_size)
|
72 |
weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape'])
|
73 |
weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape'])
|
74 |
input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape'])
|
|
|
78 |
self.register_buffer('input_scale', input_scale)
|
79 |
self.register_buffer('input_zp', input_zp)
|
80 |
|
81 |
+
# I.e., "fake quantization"
|
82 |
+
def qdq_forward(self, x):
|
83 |
scaled_x = x * self.mul_factor
|
84 |
+
quant_weight = quantize(self.conv2d.weight, self.weight_scale, self.weight_zp, is_asym=True)
|
|
|
|
|
85 |
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False)
|
86 |
dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp)
|
87 |
dequantized_input = dequantize(quant_input, self.input_scale, self.input_zp)
|
88 |
out = torch.nn.functional.conv2d(dequantized_input, dequantized_weight, self.conv2d.bias)
|
89 |
return out
|
90 |
+
|
91 |
+
# Accelerated version
|
92 |
+
def qop_forward(self, x):
|
93 |
+
# With an integer conv2d kernel, if the weight zero point is not zero,
|
94 |
+
# A correction term must be calculated to correct the output.
|
95 |
+
# Conceptually, it's identical to the linear case except that it's difficult
|
96 |
+
# to reduce the input across the dot-product dimension. This leaves us with two obvious options:
|
97 |
+
# 1. Manually compute the reduction via Im2Col -> `torch.sum`
|
98 |
+
# 2. Add an extra _output channel_ to the convolution with a kernel made from all ones (e.g., `torch.ones()`)
|
99 |
+
# In this example, I've used option #2.
|
100 |
+
# The correction term is then calculated as follows:
|
101 |
+
# - Add an extra output channel to the weight tensor with all values equal to 1 to calculate the sum (e.g., `torch.cat((quant_weight, torch.ones(shape)), dim=0)`)
|
102 |
+
# - Extract the sum from the output tensor (e.g., `sum = quant_output[:,-1,:,:]`)
|
103 |
+
# - multiply this sum with every weight zero-point (e.g., `sum * self.weight_zp`
|
104 |
+
# - Subtract from previous output (e.g., `quant_output -= sum * self.weight_zp`)
|
105 |
+
# - All other code is just to make sure the broadcasting semantics work correctly
|
106 |
+
scaled_x = x * self.mul_factor
|
107 |
+
quant_weight = quantize(self.conv2d.weight, self.weight_scale, self.weight_zp, is_asym=True).to(torch.uint8)
|
108 |
+
b_shape = list(quant_weight.shape) # Used for weight zero-point correction
|
109 |
+
b_shape[0] = 1 # Used for weight zero-point correction
|
110 |
+
weight_cat = torch.ones((1,1,1,1)).broadcast_to(b_shape).to(torch.uint8) # Used for weight zero-point correction
|
111 |
+
quant_weight = torch.cat((quant_weight,weight_cat),dim=0).to(torch.uint8) # Create extra output channel, used for weight zero-point correction
|
112 |
+
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
113 |
+
quant_output = torch.nn.functional.conv2d(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.conv2d quantizing the output to int8
|
114 |
+
correction = quant_output[:,-1,:,:] * (-self.weight_zp).to(torch.uint8).view([1, self.weight_zp.nelement()] + [1]*(quant_output.ndim-2)) # Correct zero-point for weight
|
115 |
+
quant_output = quant_output[:,:-1,:,:] + correction
|
116 |
+
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1, (self.weight_scale * self.input_scale).nelement()] + [1]*(quant_output.ndim-2)), 0.0)
|
117 |
+
output += self.conv2d.bias.view([1, self.conv2d.bias.nelement()] + [1]*(quant_output.ndim-2))
|
118 |
+
return output
|
119 |
+
|
120 |
+
def forward(self, x, qop=False):
|
121 |
+
if qop:
|
122 |
+
return self.qop_forward(x)
|
123 |
+
else:
|
124 |
+
return self.qdq_forward(x)
|
test_quant_conv2d.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from math_model import QuantConv2d
|
3 |
+
|
4 |
+
torch.manual_seed(0)
|
5 |
+
|
6 |
+
batch_size = 1
|
7 |
+
out_ch = 8
|
8 |
+
in_ch = 4
|
9 |
+
k = 3
|
10 |
+
h = 5
|
11 |
+
w = 5
|
12 |
+
|
13 |
+
quant_params = {
|
14 |
+
'smoothquant_mul': torch.rand((in_ch,)),
|
15 |
+
'smoothquant_mul_shape': (1,in_ch,1,1),
|
16 |
+
'weight_scale': torch.rand((out_ch,)),
|
17 |
+
'weight_scale_shape': (out_ch,1,1,1),
|
18 |
+
'weight_zp': torch.randint(-255, 0, (out_ch,)),
|
19 |
+
'weight_zp_shape': (out_ch,1,1,1),
|
20 |
+
'input_scale': torch.rand((1,)),
|
21 |
+
'input_scale_shape': (1,),
|
22 |
+
'input_zp': torch.zeros((1,)),
|
23 |
+
'input_zp_shape': (1,),
|
24 |
+
}
|
25 |
+
|
26 |
+
print(quant_params)
|
27 |
+
|
28 |
+
l = QuantConv2d(in_ch, out_ch, k, quant_params)
|
29 |
+
i = torch.rand((batch_size,in_ch,h,w))
|
30 |
+
o_qdq = l(i)
|
31 |
+
o_qop = l(i, qop=True)
|
32 |
+
print(o_qdq.shape)
|
33 |
+
print(o_qop.shape)
|
34 |
+
print(o_qdq - o_qop)
|
test_quant_linear.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from math_model import QuantLinear
|
3 |
+
|
4 |
+
torch.manual_seed(0)
|
5 |
+
|
6 |
+
batch_size = 1
|
7 |
+
out_ch = 128
|
8 |
+
in_ch = 64
|
9 |
+
|
10 |
+
quant_params = {
|
11 |
+
'smoothquant_mul': torch.rand((in_ch,)),
|
12 |
+
'smoothquant_mul_shape': (in_ch,),
|
13 |
+
'weight_scale': torch.rand((out_ch,)),
|
14 |
+
'weight_scale_shape': (out_ch,1),
|
15 |
+
'weight_zp': torch.randint(-255, 0, (out_ch,)),
|
16 |
+
'weight_zp_shape': (out_ch,1),
|
17 |
+
'input_scale': torch.rand((1,)),
|
18 |
+
'input_scale_shape': (1,),
|
19 |
+
'input_zp': torch.zeros((1,)),
|
20 |
+
'input_zp_shape': (1,),
|
21 |
+
}
|
22 |
+
|
23 |
+
print(quant_params)
|
24 |
+
|
25 |
+
l = QuantLinear(in_ch, out_ch, quant_params)
|
26 |
+
i = torch.rand((batch_size,in_ch))
|
27 |
+
o_qdq = l(i)
|
28 |
+
o_qop = l(i, qop=True)
|
29 |
+
print(o_qdq.shape)
|
30 |
+
print(o_qop.shape)
|
31 |
+
print(o_qdq - o_qop)
|