amazingvince commited on
Commit
f015c86
·
verified ·
1 Parent(s): 92b2087

Update modeling_custom_seq2seq_llm.py

Browse files
Files changed (1) hide show
  1. modeling_custom_seq2seq_llm.py +56 -2
modeling_custom_seq2seq_llm.py CHANGED
@@ -7,9 +7,9 @@ from flash_atten import MHA # Import the MHA class from the provided implementa
7
  from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
8
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
9
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
10
- from transformers import PreTrainedModel
 
11
 
12
- from configuration_custom_seq2seq_llm import Seq2SeqConfig
13
 
14
 
15
  class RMSNorm(nn.Module):
@@ -23,6 +23,60 @@ class RMSNorm(nn.Module):
23
  hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
24
  return self.weight * hidden_states.to(self.weight.dtype)
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  class CustomSeq2SeqLLM(PreTrainedModel):
28
  config_class = Seq2SeqConfig
 
7
  from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
8
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
9
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
10
+ from transformers import PreTrainedModel, PretrainedConfig
11
+
12
 
 
13
 
14
 
15
  class RMSNorm(nn.Module):
 
23
  hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
24
  return self.weight * hidden_states.to(self.weight.dtype)
25
 
26
+ class Seq2SeqConfig(PretrainedConfig):
27
+ def __init__(
28
+ self,
29
+ vocab_size=30522,
30
+ hidden_size=768,
31
+ num_encoder_layers=6,
32
+ num_decoder_layers=12,
33
+ num_attention_heads=12,
34
+ num_key_value_heads=4,
35
+ intermediate_size=3072,
36
+ hidden_act="silu",
37
+ hidden_dropout_prob=0.0,
38
+ attention_probs_dropout_prob=0.0,
39
+ max_position_embeddings=512,
40
+ initializer_range=0.02,
41
+ layer_norm_eps=1e-12,
42
+ pad_token_id=0,
43
+ bos_token_id=1,
44
+ eos_token_id=2,
45
+ use_cache=True,
46
+ rotary_emb_dim=0,
47
+ rotary_emb_base=10000.0,
48
+ rotary_emb_scale_base=None,
49
+ rotary_emb_interleaved=False,
50
+ **kwargs
51
+ ):
52
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
53
+ self.vocab_size = vocab_size
54
+ self.hidden_size = hidden_size
55
+ self.num_encoder_layers = num_encoder_layers
56
+ self.num_decoder_layers = num_decoder_layers
57
+ self.num_attention_heads = num_attention_heads
58
+ self.num_key_value_heads = num_key_value_heads
59
+ self.hidden_act = hidden_act
60
+ self.intermediate_size = intermediate_size
61
+ self.hidden_dropout_prob = hidden_dropout_prob
62
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
63
+ self.max_position_embeddings = max_position_embeddings
64
+ self.initializer_range = initializer_range
65
+ self.layer_norm_eps = layer_norm_eps
66
+ self.use_cache = use_cache
67
+ self.rotary_emb_base = rotary_emb_base
68
+ self.rotary_emb_scale_base = rotary_emb_scale_base
69
+ self.rotary_emb_interleaved = rotary_emb_interleaved
70
+
71
+ # Calculate head_dim and set rotary_emb_dim
72
+ self.head_dim = self.hidden_size // self.num_attention_heads
73
+ self.rotary_emb_dim = kwargs.get('rotary_emb_dim', self.head_dim // 2)
74
+
75
+ # Ensure rotary_emb_dim is not larger than head_dim
76
+ if self.rotary_emb_dim > self.head_dim:
77
+ print(f"Warning: rotary_emb_dim ({self.rotary_emb_dim}) is larger than head_dim ({self.head_dim}). Setting rotary_emb_dim to head_dim.")
78
+ self.rotary_emb_dim = self.head_dim
79
+
80
 
81
  class CustomSeq2SeqLLM(PreTrainedModel):
82
  config_class = Seq2SeqConfig