Update modeling_custom_seq2seq_llm.py
Browse files
modeling_custom_seq2seq_llm.py
CHANGED
@@ -7,9 +7,9 @@ from flash_atten import MHA # Import the MHA class from the provided implementa
|
|
7 |
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
|
8 |
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
9 |
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
|
10 |
-
from transformers import PreTrainedModel
|
|
|
11 |
|
12 |
-
from configuration_custom_seq2seq_llm import Seq2SeqConfig
|
13 |
|
14 |
|
15 |
class RMSNorm(nn.Module):
|
@@ -23,6 +23,60 @@ class RMSNorm(nn.Module):
|
|
23 |
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
24 |
return self.weight * hidden_states.to(self.weight.dtype)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
class CustomSeq2SeqLLM(PreTrainedModel):
|
28 |
config_class = Seq2SeqConfig
|
|
|
7 |
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
|
8 |
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
9 |
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
|
10 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
11 |
+
|
12 |
|
|
|
13 |
|
14 |
|
15 |
class RMSNorm(nn.Module):
|
|
|
23 |
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
24 |
return self.weight * hidden_states.to(self.weight.dtype)
|
25 |
|
26 |
+
class Seq2SeqConfig(PretrainedConfig):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
vocab_size=30522,
|
30 |
+
hidden_size=768,
|
31 |
+
num_encoder_layers=6,
|
32 |
+
num_decoder_layers=12,
|
33 |
+
num_attention_heads=12,
|
34 |
+
num_key_value_heads=4,
|
35 |
+
intermediate_size=3072,
|
36 |
+
hidden_act="silu",
|
37 |
+
hidden_dropout_prob=0.0,
|
38 |
+
attention_probs_dropout_prob=0.0,
|
39 |
+
max_position_embeddings=512,
|
40 |
+
initializer_range=0.02,
|
41 |
+
layer_norm_eps=1e-12,
|
42 |
+
pad_token_id=0,
|
43 |
+
bos_token_id=1,
|
44 |
+
eos_token_id=2,
|
45 |
+
use_cache=True,
|
46 |
+
rotary_emb_dim=0,
|
47 |
+
rotary_emb_base=10000.0,
|
48 |
+
rotary_emb_scale_base=None,
|
49 |
+
rotary_emb_interleaved=False,
|
50 |
+
**kwargs
|
51 |
+
):
|
52 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
53 |
+
self.vocab_size = vocab_size
|
54 |
+
self.hidden_size = hidden_size
|
55 |
+
self.num_encoder_layers = num_encoder_layers
|
56 |
+
self.num_decoder_layers = num_decoder_layers
|
57 |
+
self.num_attention_heads = num_attention_heads
|
58 |
+
self.num_key_value_heads = num_key_value_heads
|
59 |
+
self.hidden_act = hidden_act
|
60 |
+
self.intermediate_size = intermediate_size
|
61 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
62 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
63 |
+
self.max_position_embeddings = max_position_embeddings
|
64 |
+
self.initializer_range = initializer_range
|
65 |
+
self.layer_norm_eps = layer_norm_eps
|
66 |
+
self.use_cache = use_cache
|
67 |
+
self.rotary_emb_base = rotary_emb_base
|
68 |
+
self.rotary_emb_scale_base = rotary_emb_scale_base
|
69 |
+
self.rotary_emb_interleaved = rotary_emb_interleaved
|
70 |
+
|
71 |
+
# Calculate head_dim and set rotary_emb_dim
|
72 |
+
self.head_dim = self.hidden_size // self.num_attention_heads
|
73 |
+
self.rotary_emb_dim = kwargs.get('rotary_emb_dim', self.head_dim // 2)
|
74 |
+
|
75 |
+
# Ensure rotary_emb_dim is not larger than head_dim
|
76 |
+
if self.rotary_emb_dim > self.head_dim:
|
77 |
+
print(f"Warning: rotary_emb_dim ({self.rotary_emb_dim}) is larger than head_dim ({self.head_dim}). Setting rotary_emb_dim to head_dim.")
|
78 |
+
self.rotary_emb_dim = self.head_dim
|
79 |
+
|
80 |
|
81 |
class CustomSeq2SeqLLM(PreTrainedModel):
|
82 |
config_class = Seq2SeqConfig
|