amaye15 commited on
Commit
763dbe8
·
verified ·
1 Parent(s): cef9fc0

End of training

Browse files
Files changed (4) hide show
  1. README.md +109 -109
  2. model.safetensors +1 -1
  3. train.ipynb +0 -0
  4. training_args.bin +1 -1
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
- value: 0.8406219630709426
29
  - name: F1
30
  type: f1
31
- value: 0.8370399997829452
32
  - name: Precision
33
  type: precision
34
- value: 0.8413608553082093
35
  - name: Recall
36
  type: recall
37
- value: 0.837163245644009
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) on the stanford-dogs dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.5144
48
- - Accuracy: 0.8406
49
- - F1: 0.8370
50
- - Precision: 0.8414
51
- - Recall: 0.8372
52
 
53
  ## Model description
54
 
@@ -81,106 +81,106 @@ The following hyperparameters were used during training:
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
  |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
- | 4.9299 | 0.0777 | 10 | 4.4830 | 0.0437 | 0.0194 | 0.0268 | 0.0406 |
85
- | 4.4701 | 0.1553 | 20 | 4.1771 | 0.0897 | 0.0695 | 0.1215 | 0.0872 |
86
- | 3.925 | 0.2330 | 30 | 3.1443 | 0.2087 | 0.1820 | 0.2840 | 0.2050 |
87
- | 3.3549 | 0.3107 | 40 | 2.5232 | 0.3494 | 0.3224 | 0.4544 | 0.3458 |
88
- | 2.8512 | 0.3883 | 50 | 2.1503 | 0.4332 | 0.3991 | 0.5244 | 0.4215 |
89
- | 2.5846 | 0.4660 | 60 | 1.7744 | 0.5180 | 0.4863 | 0.6052 | 0.5127 |
90
- | 2.2942 | 0.5437 | 70 | 1.5619 | 0.5437 | 0.5333 | 0.6446 | 0.5421 |
91
- | 2.1577 | 0.6214 | 80 | 1.5739 | 0.5622 | 0.5452 | 0.6301 | 0.5600 |
92
- | 1.9423 | 0.6990 | 90 | 1.2747 | 0.6198 | 0.6010 | 0.6840 | 0.6156 |
93
- | 1.663 | 0.7767 | 100 | 1.3143 | 0.6115 | 0.6013 | 0.7101 | 0.6084 |
94
- | 1.8093 | 0.8544 | 110 | 1.1125 | 0.6667 | 0.6491 | 0.7107 | 0.6618 |
95
- | 1.6925 | 0.9320 | 120 | 1.3373 | 0.6110 | 0.5992 | 0.6918 | 0.6074 |
96
- | 1.7028 | 1.0097 | 130 | 1.0352 | 0.6934 | 0.6810 | 0.7321 | 0.6878 |
97
- | 1.4451 | 1.0874 | 140 | 0.9891 | 0.7000 | 0.6924 | 0.7438 | 0.6931 |
98
- | 1.4583 | 1.1650 | 150 | 0.9574 | 0.7153 | 0.7045 | 0.7411 | 0.7120 |
99
- | 1.4219 | 1.2427 | 160 | 0.9801 | 0.7024 | 0.6929 | 0.7473 | 0.6991 |
100
- | 1.442 | 1.3204 | 170 | 1.0351 | 0.6829 | 0.6794 | 0.7294 | 0.6780 |
101
- | 1.3218 | 1.3981 | 180 | 0.9178 | 0.7238 | 0.7196 | 0.7632 | 0.7227 |
102
- | 1.2486 | 1.4757 | 190 | 0.8521 | 0.7415 | 0.7361 | 0.7669 | 0.7363 |
103
- | 1.2239 | 1.5534 | 200 | 0.9499 | 0.7046 | 0.6979 | 0.7582 | 0.7027 |
104
- | 1.2724 | 1.6311 | 210 | 0.9332 | 0.7157 | 0.7050 | 0.7604 | 0.7111 |
105
- | 1.205 | 1.7087 | 220 | 0.8662 | 0.7391 | 0.7287 | 0.7770 | 0.7349 |
106
- | 1.2263 | 1.7864 | 230 | 0.8464 | 0.7393 | 0.7302 | 0.7668 | 0.7343 |
107
- | 1.1301 | 1.8641 | 240 | 0.8417 | 0.7374 | 0.7302 | 0.7795 | 0.7342 |
108
- | 1.2035 | 1.9417 | 250 | 0.7798 | 0.7629 | 0.7553 | 0.7873 | 0.7600 |
109
- | 1.1138 | 2.0194 | 260 | 0.8089 | 0.7495 | 0.7368 | 0.7789 | 0.7444 |
110
- | 0.9266 | 2.0971 | 270 | 0.7645 | 0.7566 | 0.7539 | 0.7864 | 0.7550 |
111
- | 0.9438 | 2.1748 | 280 | 0.7555 | 0.7653 | 0.7575 | 0.7916 | 0.7609 |
112
- | 0.9776 | 2.2524 | 290 | 0.7824 | 0.7544 | 0.7494 | 0.7787 | 0.7531 |
113
- | 0.9083 | 2.3301 | 300 | 0.7687 | 0.7626 | 0.7543 | 0.7914 | 0.7606 |
114
- | 0.9157 | 2.4078 | 310 | 0.7573 | 0.7682 | 0.7634 | 0.7966 | 0.7637 |
115
- | 0.9962 | 2.4854 | 320 | 0.7704 | 0.7631 | 0.7539 | 0.7950 | 0.7600 |
116
- | 0.9313 | 2.5631 | 330 | 0.7552 | 0.7609 | 0.7560 | 0.7879 | 0.7564 |
117
- | 0.8893 | 2.6408 | 340 | 0.7491 | 0.7655 | 0.7568 | 0.7846 | 0.7621 |
118
- | 0.9724 | 2.7184 | 350 | 0.7167 | 0.7787 | 0.7721 | 0.7976 | 0.7738 |
119
- | 0.9045 | 2.7961 | 360 | 0.7067 | 0.7799 | 0.7728 | 0.8082 | 0.7739 |
120
- | 0.8922 | 2.8738 | 370 | 0.7028 | 0.7799 | 0.7696 | 0.8017 | 0.7745 |
121
- | 0.9082 | 2.9515 | 380 | 0.6934 | 0.7767 | 0.7716 | 0.7892 | 0.7736 |
122
- | 0.8438 | 3.0291 | 390 | 0.6680 | 0.7869 | 0.7795 | 0.8068 | 0.7814 |
123
- | 0.7603 | 3.1068 | 400 | 0.6601 | 0.7918 | 0.7837 | 0.8060 | 0.7871 |
124
- | 0.6695 | 3.1845 | 410 | 0.6628 | 0.7954 | 0.7881 | 0.8113 | 0.7927 |
125
- | 0.7315 | 3.2621 | 420 | 0.6564 | 0.7983 | 0.7908 | 0.8113 | 0.7942 |
126
- | 0.7155 | 3.3398 | 430 | 0.6562 | 0.7906 | 0.7876 | 0.8119 | 0.7866 |
127
- | 0.7216 | 3.4175 | 440 | 0.6499 | 0.7881 | 0.7828 | 0.8048 | 0.7850 |
128
- | 0.7167 | 3.4951 | 450 | 0.6440 | 0.7942 | 0.7890 | 0.8073 | 0.7928 |
129
- | 0.6772 | 3.5728 | 460 | 0.6147 | 0.8064 | 0.8014 | 0.8161 | 0.8021 |
130
- | 0.7298 | 3.6505 | 470 | 0.6643 | 0.7974 | 0.7942 | 0.8172 | 0.7928 |
131
- | 0.6712 | 3.7282 | 480 | 0.6114 | 0.8071 | 0.8032 | 0.8182 | 0.8030 |
132
- | 0.703 | 3.8058 | 490 | 0.6246 | 0.8069 | 0.8011 | 0.8188 | 0.8027 |
133
- | 0.724 | 3.8835 | 500 | 0.6386 | 0.8022 | 0.7958 | 0.8167 | 0.7980 |
134
- | 0.6467 | 3.9612 | 510 | 0.6490 | 0.8044 | 0.7981 | 0.8154 | 0.8002 |
135
- | 0.6781 | 4.0388 | 520 | 0.6296 | 0.8078 | 0.8037 | 0.8208 | 0.8055 |
136
- | 0.5615 | 4.1165 | 530 | 0.6108 | 0.8117 | 0.8075 | 0.8196 | 0.8091 |
137
- | 0.5095 | 4.1942 | 540 | 0.6272 | 0.8090 | 0.8045 | 0.8228 | 0.8042 |
138
- | 0.562 | 4.2718 | 550 | 0.6529 | 0.8008 | 0.7966 | 0.8197 | 0.7965 |
139
- | 0.5307 | 4.3495 | 560 | 0.6290 | 0.8071 | 0.8036 | 0.8164 | 0.8044 |
140
- | 0.5428 | 4.4272 | 570 | 0.6033 | 0.8154 | 0.8097 | 0.8221 | 0.8115 |
141
- | 0.5248 | 4.5049 | 580 | 0.6166 | 0.8141 | 0.8035 | 0.8228 | 0.8094 |
142
- | 0.5608 | 4.5825 | 590 | 0.6010 | 0.8127 | 0.8061 | 0.8243 | 0.8078 |
143
- | 0.5151 | 4.6602 | 600 | 0.6155 | 0.8061 | 0.8029 | 0.8231 | 0.8024 |
144
- | 0.5712 | 4.7379 | 610 | 0.6015 | 0.8134 | 0.8091 | 0.8208 | 0.8093 |
145
- | 0.564 | 4.8155 | 620 | 0.5740 | 0.8265 | 0.8217 | 0.8344 | 0.8222 |
146
- | 0.5198 | 4.8932 | 630 | 0.5693 | 0.8239 | 0.8165 | 0.8321 | 0.8186 |
147
- | 0.4851 | 4.9709 | 640 | 0.5574 | 0.8273 | 0.8225 | 0.8315 | 0.8242 |
148
- | 0.4428 | 5.0485 | 650 | 0.5711 | 0.8253 | 0.8187 | 0.8331 | 0.8199 |
149
- | 0.3877 | 5.1262 | 660 | 0.5714 | 0.8234 | 0.8198 | 0.8277 | 0.8210 |
150
- | 0.4377 | 5.2039 | 670 | 0.5736 | 0.8229 | 0.8168 | 0.8301 | 0.8196 |
151
- | 0.4056 | 5.2816 | 680 | 0.5670 | 0.8260 | 0.8228 | 0.8365 | 0.8232 |
152
- | 0.4679 | 5.3592 | 690 | 0.5549 | 0.8297 | 0.8247 | 0.8344 | 0.8267 |
153
- | 0.3742 | 5.4369 | 700 | 0.5582 | 0.8246 | 0.8188 | 0.8314 | 0.8210 |
154
- | 0.4215 | 5.5146 | 710 | 0.5588 | 0.8246 | 0.8211 | 0.8305 | 0.8209 |
155
- | 0.4136 | 5.5922 | 720 | 0.5594 | 0.8202 | 0.8153 | 0.8257 | 0.8160 |
156
- | 0.4464 | 5.6699 | 730 | 0.5541 | 0.8258 | 0.8216 | 0.8307 | 0.8223 |
157
- | 0.4684 | 5.7476 | 740 | 0.5477 | 0.8275 | 0.8241 | 0.8326 | 0.8238 |
158
- | 0.4094 | 5.8252 | 750 | 0.5436 | 0.8287 | 0.8247 | 0.8341 | 0.8257 |
159
- | 0.3757 | 5.9029 | 760 | 0.5514 | 0.8307 | 0.8258 | 0.8355 | 0.8275 |
160
- | 0.388 | 5.9806 | 770 | 0.5523 | 0.8285 | 0.8244 | 0.8320 | 0.8254 |
161
- | 0.3528 | 6.0583 | 780 | 0.5500 | 0.8246 | 0.8195 | 0.8291 | 0.8206 |
162
- | 0.3466 | 6.1359 | 790 | 0.5358 | 0.8311 | 0.8277 | 0.8335 | 0.8276 |
163
- | 0.3149 | 6.2136 | 800 | 0.5389 | 0.8326 | 0.8283 | 0.8368 | 0.8286 |
164
- | 0.3106 | 6.2913 | 810 | 0.5277 | 0.8379 | 0.8344 | 0.8397 | 0.8342 |
165
- | 0.3226 | 6.3689 | 820 | 0.5399 | 0.8304 | 0.8266 | 0.8339 | 0.8268 |
166
- | 0.3578 | 6.4466 | 830 | 0.5370 | 0.8328 | 0.8287 | 0.8369 | 0.8287 |
167
- | 0.348 | 6.5243 | 840 | 0.5371 | 0.8307 | 0.8276 | 0.8340 | 0.8275 |
168
- | 0.3228 | 6.6019 | 850 | 0.5319 | 0.8338 | 0.8295 | 0.8371 | 0.8306 |
169
- | 0.3022 | 6.6796 | 860 | 0.5332 | 0.8331 | 0.8295 | 0.8365 | 0.8295 |
170
- | 0.3311 | 6.7573 | 870 | 0.5314 | 0.8307 | 0.8278 | 0.8329 | 0.8273 |
171
- | 0.3221 | 6.8350 | 880 | 0.5267 | 0.8358 | 0.8324 | 0.8379 | 0.8322 |
172
- | 0.3132 | 6.9126 | 890 | 0.5293 | 0.8336 | 0.8293 | 0.8363 | 0.8295 |
173
- | 0.2821 | 6.9903 | 900 | 0.5279 | 0.8314 | 0.8272 | 0.8342 | 0.8277 |
174
- | 0.2486 | 7.0680 | 910 | 0.5286 | 0.8326 | 0.8287 | 0.8339 | 0.8291 |
175
- | 0.2936 | 7.1456 | 920 | 0.5250 | 0.8370 | 0.8330 | 0.8380 | 0.8336 |
176
- | 0.292 | 7.2233 | 930 | 0.5205 | 0.8392 | 0.8351 | 0.8408 | 0.8353 |
177
- | 0.2806 | 7.3010 | 940 | 0.5207 | 0.8387 | 0.8349 | 0.8403 | 0.8352 |
178
- | 0.2406 | 7.3786 | 950 | 0.5148 | 0.8404 | 0.8364 | 0.8406 | 0.8369 |
179
- | 0.2941 | 7.4563 | 960 | 0.5145 | 0.8404 | 0.8372 | 0.8419 | 0.8372 |
180
- | 0.2597 | 7.5340 | 970 | 0.5156 | 0.8394 | 0.8358 | 0.8401 | 0.8359 |
181
- | 0.2534 | 7.6117 | 980 | 0.5157 | 0.8404 | 0.8368 | 0.8410 | 0.8369 |
182
- | 0.2487 | 7.6893 | 990 | 0.5150 | 0.8401 | 0.8364 | 0.8408 | 0.8366 |
183
- | 0.2618 | 7.7670 | 1000 | 0.5144 | 0.8406 | 0.8370 | 0.8414 | 0.8372 |
184
 
185
 
186
  ### Framework versions
 
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.8323615160349854
29
  - name: F1
30
  type: f1
31
+ value: 0.8275029898684891
32
  - name: Precision
33
  type: precision
34
+ value: 0.834013028184158
35
  - name: Recall
36
  type: recall
37
+ value: 0.8284605497111518
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) on the stanford-dogs dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.5447
48
+ - Accuracy: 0.8324
49
+ - F1: 0.8275
50
+ - Precision: 0.8340
51
+ - Recall: 0.8285
52
 
53
  ## Model description
54
 
 
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
  |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 4.8988 | 0.0777 | 10 | 4.4703 | 0.0632 | 0.0290 | 0.0456 | 0.0624 |
85
+ | 4.4323 | 0.1553 | 20 | 3.8317 | 0.1540 | 0.1033 | 0.1490 | 0.1435 |
86
+ | 3.8517 | 0.2330 | 30 | 2.9889 | 0.2787 | 0.2215 | 0.3131 | 0.2661 |
87
+ | 3.4059 | 0.3107 | 40 | 2.3481 | 0.3754 | 0.3339 | 0.4429 | 0.3702 |
88
+ | 2.8496 | 0.3883 | 50 | 2.3529 | 0.3649 | 0.3426 | 0.5046 | 0.3637 |
89
+ | 2.597 | 0.4660 | 60 | 1.6990 | 0.5350 | 0.5160 | 0.6056 | 0.5289 |
90
+ | 2.2791 | 0.5437 | 70 | 1.5456 | 0.5649 | 0.5345 | 0.6426 | 0.5591 |
91
+ | 2.056 | 0.6214 | 80 | 1.5037 | 0.5678 | 0.5557 | 0.6359 | 0.5658 |
92
+ | 1.9135 | 0.6990 | 90 | 1.5768 | 0.5413 | 0.5097 | 0.6302 | 0.5321 |
93
+ | 1.8408 | 0.7767 | 100 | 1.1497 | 0.6591 | 0.6394 | 0.6927 | 0.6535 |
94
+ | 1.7106 | 0.8544 | 110 | 1.2396 | 0.6365 | 0.6200 | 0.6801 | 0.6297 |
95
+ | 1.7172 | 0.9320 | 120 | 1.0894 | 0.6820 | 0.6715 | 0.7272 | 0.6766 |
96
+ | 1.6366 | 1.0097 | 130 | 1.0108 | 0.6963 | 0.6866 | 0.7387 | 0.6907 |
97
+ | 1.3805 | 1.0874 | 140 | 0.9943 | 0.6941 | 0.6838 | 0.7329 | 0.6878 |
98
+ | 1.4473 | 1.1650 | 150 | 0.9784 | 0.7034 | 0.6917 | 0.7437 | 0.6999 |
99
+ | 1.3215 | 1.2427 | 160 | 1.0036 | 0.6922 | 0.6767 | 0.7445 | 0.6862 |
100
+ | 1.3711 | 1.3204 | 170 | 0.9941 | 0.6859 | 0.6797 | 0.7414 | 0.6807 |
101
+ | 1.2312 | 1.3981 | 180 | 0.9691 | 0.6973 | 0.6904 | 0.7373 | 0.6970 |
102
+ | 1.3214 | 1.4757 | 190 | 0.9573 | 0.7106 | 0.6934 | 0.7435 | 0.7041 |
103
+ | 1.2569 | 1.5534 | 200 | 0.9337 | 0.7155 | 0.7062 | 0.7480 | 0.7147 |
104
+ | 1.2645 | 1.6311 | 210 | 0.8849 | 0.7298 | 0.7231 | 0.7586 | 0.7264 |
105
+ | 1.2608 | 1.7087 | 220 | 0.8403 | 0.7264 | 0.7153 | 0.7580 | 0.7232 |
106
+ | 1.2059 | 1.7864 | 230 | 0.8654 | 0.7293 | 0.7240 | 0.7632 | 0.7274 |
107
+ | 1.1956 | 1.8641 | 240 | 0.7840 | 0.7524 | 0.7435 | 0.7721 | 0.7498 |
108
+ | 1.1926 | 1.9417 | 250 | 0.8357 | 0.7383 | 0.7326 | 0.7800 | 0.7359 |
109
+ | 1.1563 | 2.0194 | 260 | 0.8298 | 0.7413 | 0.7332 | 0.7727 | 0.7359 |
110
+ | 0.9693 | 2.0971 | 270 | 0.7872 | 0.7512 | 0.7434 | 0.7717 | 0.7475 |
111
+ | 0.9372 | 2.1748 | 280 | 0.7755 | 0.7561 | 0.7502 | 0.7704 | 0.7527 |
112
+ | 1.0188 | 2.2524 | 290 | 0.7516 | 0.7612 | 0.7539 | 0.7832 | 0.7566 |
113
+ | 0.8951 | 2.3301 | 300 | 0.7819 | 0.7510 | 0.7408 | 0.7678 | 0.7457 |
114
+ | 0.8975 | 2.4078 | 310 | 0.8678 | 0.7298 | 0.7221 | 0.7643 | 0.7269 |
115
+ | 0.9194 | 2.4854 | 320 | 0.7628 | 0.7655 | 0.7555 | 0.7908 | 0.7596 |
116
+ | 0.8753 | 2.5631 | 330 | 0.7341 | 0.7668 | 0.7567 | 0.7876 | 0.7624 |
117
+ | 0.8798 | 2.6408 | 340 | 0.7475 | 0.7600 | 0.7541 | 0.7839 | 0.7589 |
118
+ | 0.9025 | 2.7184 | 350 | 0.7138 | 0.7694 | 0.7632 | 0.7889 | 0.7676 |
119
+ | 0.8974 | 2.7961 | 360 | 0.7128 | 0.7736 | 0.7668 | 0.7868 | 0.7694 |
120
+ | 0.8956 | 2.8738 | 370 | 0.7460 | 0.7636 | 0.7580 | 0.7855 | 0.7618 |
121
+ | 0.8629 | 2.9515 | 380 | 0.7315 | 0.7675 | 0.7590 | 0.7853 | 0.7616 |
122
+ | 0.8477 | 3.0291 | 390 | 0.7071 | 0.7738 | 0.7674 | 0.7933 | 0.7705 |
123
+ | 0.6569 | 3.1068 | 400 | 0.7051 | 0.7787 | 0.7681 | 0.7907 | 0.7723 |
124
+ | 0.691 | 3.1845 | 410 | 0.6839 | 0.7840 | 0.7768 | 0.8040 | 0.7780 |
125
+ | 0.6823 | 3.2621 | 420 | 0.6759 | 0.7852 | 0.7768 | 0.7935 | 0.7810 |
126
+ | 0.7074 | 3.3398 | 430 | 0.6757 | 0.7835 | 0.7795 | 0.8003 | 0.7812 |
127
+ | 0.6721 | 3.4175 | 440 | 0.6905 | 0.7889 | 0.7811 | 0.7999 | 0.7851 |
128
+ | 0.7367 | 3.4951 | 450 | 0.6906 | 0.7830 | 0.7750 | 0.7939 | 0.7812 |
129
+ | 0.6784 | 3.5728 | 460 | 0.6663 | 0.7937 | 0.7863 | 0.8039 | 0.7913 |
130
+ | 0.6661 | 3.6505 | 470 | 0.6949 | 0.7840 | 0.7762 | 0.7990 | 0.7804 |
131
+ | 0.6648 | 3.7282 | 480 | 0.6440 | 0.7971 | 0.7922 | 0.8119 | 0.7937 |
132
+ | 0.7052 | 3.8058 | 490 | 0.6983 | 0.7823 | 0.7748 | 0.7917 | 0.7784 |
133
+ | 0.7213 | 3.8835 | 500 | 0.6627 | 0.7930 | 0.7877 | 0.8059 | 0.7878 |
134
+ | 0.6638 | 3.9612 | 510 | 0.6402 | 0.7971 | 0.7910 | 0.8050 | 0.7929 |
135
+ | 0.6242 | 4.0388 | 520 | 0.6487 | 0.7983 | 0.7925 | 0.8090 | 0.7961 |
136
+ | 0.5233 | 4.1165 | 530 | 0.6648 | 0.7942 | 0.7859 | 0.8033 | 0.7899 |
137
+ | 0.5677 | 4.1942 | 540 | 0.6201 | 0.8076 | 0.8017 | 0.8141 | 0.8044 |
138
+ | 0.5325 | 4.2718 | 550 | 0.6332 | 0.8039 | 0.7970 | 0.8110 | 0.8018 |
139
+ | 0.5479 | 4.3495 | 560 | 0.6283 | 0.8083 | 0.8028 | 0.8143 | 0.8047 |
140
+ | 0.5485 | 4.4272 | 570 | 0.6005 | 0.8122 | 0.8090 | 0.8183 | 0.8101 |
141
+ | 0.5521 | 4.5049 | 580 | 0.6273 | 0.8069 | 0.8029 | 0.8169 | 0.8040 |
142
+ | 0.5607 | 4.5825 | 590 | 0.6291 | 0.8069 | 0.8020 | 0.8203 | 0.8027 |
143
+ | 0.5263 | 4.6602 | 600 | 0.6218 | 0.8076 | 0.8033 | 0.8192 | 0.8026 |
144
+ | 0.5798 | 4.7379 | 610 | 0.5982 | 0.8178 | 0.8134 | 0.8275 | 0.8138 |
145
+ | 0.5593 | 4.8155 | 620 | 0.6212 | 0.8105 | 0.8075 | 0.8209 | 0.8067 |
146
+ | 0.58 | 4.8932 | 630 | 0.5949 | 0.8166 | 0.8111 | 0.8250 | 0.8121 |
147
+ | 0.4746 | 4.9709 | 640 | 0.6007 | 0.8180 | 0.8122 | 0.8273 | 0.8122 |
148
+ | 0.4821 | 5.0485 | 650 | 0.5929 | 0.8183 | 0.8131 | 0.8234 | 0.8138 |
149
+ | 0.4221 | 5.1262 | 660 | 0.6179 | 0.8086 | 0.8017 | 0.8151 | 0.8044 |
150
+ | 0.4615 | 5.2039 | 670 | 0.5937 | 0.8195 | 0.8136 | 0.8228 | 0.8150 |
151
+ | 0.4078 | 5.2816 | 680 | 0.5970 | 0.8132 | 0.8095 | 0.8213 | 0.8085 |
152
+ | 0.4551 | 5.3592 | 690 | 0.5937 | 0.8132 | 0.8100 | 0.8210 | 0.8103 |
153
+ | 0.4211 | 5.4369 | 700 | 0.5834 | 0.8180 | 0.8140 | 0.8236 | 0.8134 |
154
+ | 0.4055 | 5.5146 | 710 | 0.5938 | 0.8173 | 0.8114 | 0.8239 | 0.8116 |
155
+ | 0.4284 | 5.5922 | 720 | 0.5988 | 0.8134 | 0.8102 | 0.8182 | 0.8103 |
156
+ | 0.4113 | 5.6699 | 730 | 0.6067 | 0.8132 | 0.8072 | 0.8198 | 0.8094 |
157
+ | 0.3689 | 5.7476 | 740 | 0.6013 | 0.8134 | 0.8081 | 0.8201 | 0.8099 |
158
+ | 0.3788 | 5.8252 | 750 | 0.5993 | 0.8090 | 0.8024 | 0.8146 | 0.8048 |
159
+ | 0.427 | 5.9029 | 760 | 0.5807 | 0.8222 | 0.8173 | 0.8262 | 0.8185 |
160
+ | 0.4027 | 5.9806 | 770 | 0.5829 | 0.8239 | 0.8182 | 0.8289 | 0.8191 |
161
+ | 0.3971 | 6.0583 | 780 | 0.5741 | 0.8243 | 0.8218 | 0.8300 | 0.8209 |
162
+ | 0.3543 | 6.1359 | 790 | 0.5662 | 0.8246 | 0.8206 | 0.8296 | 0.8203 |
163
+ | 0.3304 | 6.2136 | 800 | 0.5678 | 0.8253 | 0.8216 | 0.8323 | 0.8219 |
164
+ | 0.3065 | 6.2913 | 810 | 0.5797 | 0.8214 | 0.8167 | 0.8279 | 0.8175 |
165
+ | 0.2913 | 6.3689 | 820 | 0.5769 | 0.8212 | 0.8162 | 0.8250 | 0.8167 |
166
+ | 0.3447 | 6.4466 | 830 | 0.5726 | 0.8202 | 0.8165 | 0.8256 | 0.8168 |
167
+ | 0.3064 | 6.5243 | 840 | 0.5750 | 0.8241 | 0.8207 | 0.8310 | 0.8208 |
168
+ | 0.3106 | 6.6019 | 850 | 0.5631 | 0.8285 | 0.8247 | 0.8355 | 0.8246 |
169
+ | 0.297 | 6.6796 | 860 | 0.5591 | 0.8282 | 0.8238 | 0.8321 | 0.8244 |
170
+ | 0.2967 | 6.7573 | 870 | 0.5623 | 0.8243 | 0.8198 | 0.8279 | 0.8206 |
171
+ | 0.3157 | 6.8350 | 880 | 0.5617 | 0.8222 | 0.8177 | 0.8247 | 0.8182 |
172
+ | 0.3129 | 6.9126 | 890 | 0.5638 | 0.8251 | 0.8200 | 0.8283 | 0.8210 |
173
+ | 0.2994 | 6.9903 | 900 | 0.5578 | 0.8270 | 0.8210 | 0.8288 | 0.8233 |
174
+ | 0.31 | 7.0680 | 910 | 0.5498 | 0.8304 | 0.8262 | 0.8315 | 0.8267 |
175
+ | 0.2733 | 7.1456 | 920 | 0.5547 | 0.8280 | 0.8230 | 0.8291 | 0.8242 |
176
+ | 0.2496 | 7.2233 | 930 | 0.5527 | 0.8292 | 0.8255 | 0.8319 | 0.8255 |
177
+ | 0.2398 | 7.3010 | 940 | 0.5562 | 0.8287 | 0.8240 | 0.8305 | 0.8250 |
178
+ | 0.2758 | 7.3786 | 950 | 0.5509 | 0.8311 | 0.8272 | 0.8337 | 0.8279 |
179
+ | 0.2539 | 7.4563 | 960 | 0.5521 | 0.8297 | 0.8243 | 0.8310 | 0.8260 |
180
+ | 0.2891 | 7.5340 | 970 | 0.5492 | 0.8314 | 0.8266 | 0.8337 | 0.8275 |
181
+ | 0.239 | 7.6117 | 980 | 0.5466 | 0.8321 | 0.8271 | 0.8337 | 0.8283 |
182
+ | 0.23 | 7.6893 | 990 | 0.5449 | 0.8324 | 0.8275 | 0.8338 | 0.8285 |
183
+ | 0.2565 | 7.7670 | 1000 | 0.5447 | 0.8324 | 0.8275 | 0.8340 | 0.8285 |
184
 
185
 
186
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dad239e61801b79bf3b82e4ed993efc8c403be2dadcfeeef45396800c1012393
3
  size 371930976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:430eb0443753e815fee4ce3a8c5a4147e7dede6d710c7ee44c4369a1da1c2b06
3
  size 371930976
train.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:24f1016240c1d1936589d86a7277d429cefa1660c376cc392f942fd63cc41c46
3
  size 5112
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a04dfd289d2c5c1771454fdd51e6b0dd1d82f36bcd427ac5c5f1eb46e0c72cd
3
  size 5112