|
--- |
|
license: mit |
|
base_model: |
|
- apple/aimv2-large-patch14-native |
|
pipeline_tag: image-classification |
|
tags: |
|
- image-classification |
|
- vision |
|
library_name: transformers |
|
--- |
|
|
|
|
|
# AIMv2-Large-Patch14-Native Image Classification |
|
|
|
[Original AIMv2 Paper](https://arxiv.org/abs/2411.14402) | [BibTeX](#citation) |
|
|
|
This repository contains an adapted version of the original AIMv2 model, modified to be compatible with the `AutoModelForImageClassification` class from Hugging Face Transformers. This adaptation enables seamless use of the model for image classification tasks. |
|
|
|
**This model has not been trained/fine-tuned** |
|
|
|
## Introduction |
|
|
|
We have adapted the original `apple/aimv2-large-patch14-native` model to work with `AutoModelForImageClassification`. The AIMv2 family consists of vision models pre-trained with a multimodal autoregressive objective, offering robust performance across various benchmarks. |
|
|
|
Some highlights of the AIMv2 models include: |
|
|
|
1. Outperforming OAI CLIP and SigLIP on the majority of multimodal understanding benchmarks. |
|
2. Surpassing DINOv2 in open-vocabulary object detection and referring expression comprehension. |
|
3. Demonstrating strong recognition performance, with AIMv2-3B achieving **89.5% on ImageNet using a frozen trunk**. |
|
|
|
## Usage |
|
|
|
### PyTorch |
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
processor = AutoImageProcessor.from_pretrained( |
|
"amaye15/aimv2-large-patch14-native-image-classification", |
|
) |
|
model = AutoModelForImageClassification.from_pretrained( |
|
"amaye15/aimv2-large-patch14-native-image-classification", |
|
trust_remote_code=True, |
|
) |
|
|
|
inputs = processor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
# Get predicted class |
|
predictions = outputs.logits.softmax(dim=-1) |
|
predicted_class = predictions.argmax(-1).item() |
|
|
|
print(f"Predicted class: {model.config.id2label[predicted_class]}") |
|
``` |
|
|
|
## Model Details |
|
|
|
- **Model Name**: `amaye15/aimv2-large-patch14-native-image-classification` |
|
- **Original Model**: `apple/aimv2-large-patch14-native` |
|
- **Adaptation**: Modified to be compatible with `AutoModelForImageClassification` for direct use in image classification tasks. |
|
- **Framework**: PyTorch |
|
|
|
## Citation |
|
|
|
If you use this model or find it helpful, please consider citing the original AIMv2 paper: |
|
|
|
```bibtex |
|
@article{yang2023aimv2, |
|
title={AIMv2: Advances in Multimodal Vision Models}, |
|
author={Yang, Li and others}, |
|
journal={arXiv preprint arXiv:2411.14402}, |
|
year={2023} |
|
} |
|
``` |