amanpatkar
commited on
amanpatkar/distilbert-finetuned-ner
Browse files- README.md +92 -205
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,205 +1,92 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
-
|
6 |
-
|
7 |
-
-
|
8 |
-
metrics:
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
#### Preprocessing [optional]
|
95 |
-
|
96 |
-
[More Information Needed]
|
97 |
-
|
98 |
-
|
99 |
-
#### Training Hyperparameters
|
100 |
-
|
101 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
102 |
-
|
103 |
-
#### Speeds, Sizes, Times [optional]
|
104 |
-
|
105 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
106 |
-
|
107 |
-
[More Information Needed]
|
108 |
-
|
109 |
-
## Evaluation
|
110 |
-
|
111 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
112 |
-
|
113 |
-
### Testing Data, Factors & Metrics
|
114 |
-
|
115 |
-
#### Testing Data
|
116 |
-
|
117 |
-
<!-- This should link to a Dataset Card if possible. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Factors
|
122 |
-
|
123 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
#### Metrics
|
128 |
-
|
129 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
### Results
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
#### Summary
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
## Model Examination [optional]
|
142 |
-
|
143 |
-
<!-- Relevant interpretability work for the model goes here -->
|
144 |
-
|
145 |
-
[More Information Needed]
|
146 |
-
|
147 |
-
## Environmental Impact
|
148 |
-
|
149 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
150 |
-
|
151 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
152 |
-
|
153 |
-
- **Hardware Type:** [More Information Needed]
|
154 |
-
- **Hours used:** [More Information Needed]
|
155 |
-
- **Cloud Provider:** [More Information Needed]
|
156 |
-
- **Compute Region:** [More Information Needed]
|
157 |
-
- **Carbon Emitted:** [More Information Needed]
|
158 |
-
|
159 |
-
## Technical Specifications [optional]
|
160 |
-
|
161 |
-
### Model Architecture and Objective
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
### Compute Infrastructure
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Hardware
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
#### Software
|
174 |
-
|
175 |
-
[More Information Needed]
|
176 |
-
|
177 |
-
## Citation [optional]
|
178 |
-
|
179 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
180 |
-
|
181 |
-
**BibTeX:**
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
**APA:**
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## Glossary [optional]
|
190 |
-
|
191 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## More Information [optional]
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
## Model Card Authors [optional]
|
200 |
-
|
201 |
-
[More Information Needed]
|
202 |
-
|
203 |
-
## Model Card Contact
|
204 |
-
|
205 |
-
[More Information Needed]
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- conll2003
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: distilbert-finetuned-ner
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: conll2003
|
21 |
+
type: conll2003
|
22 |
+
config: conll2003
|
23 |
+
split: validation
|
24 |
+
args: conll2003
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 1.0
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 1.0
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 1.0
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 1.0
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# distilbert-finetuned-ner
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0711
|
48 |
+
- Precision: 1.0
|
49 |
+
- Recall: 1.0
|
50 |
+
- F1: 1.0
|
51 |
+
- Accuracy: 1.0
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 3
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
|
82 |
+
| 0.0908 | 1.0 | 1756 | 0.0887 | 1.0 | 1.0 | 1.0 | 1.0 |
|
83 |
+
| 0.0467 | 2.0 | 3512 | 0.0713 | 1.0 | 1.0 | 1.0 | 1.0 |
|
84 |
+
| 0.0276 | 3.0 | 5268 | 0.0711 | 1.0 | 1.0 | 1.0 | 1.0 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.41.2
|
90 |
+
- Pytorch 2.3.1
|
91 |
+
- Datasets 2.20.0
|
92 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": false,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "DistilBertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85d654163bf874c3aae09dc5148f58f0a480ae890d30bd869d0a1a024c4c43ff
|
3 |
+
size 5112
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|