Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1735539931.86790b443086 +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000961_3936256_reward_24.588.pth +3 -0
- checkpoint_p0/checkpoint_000000493_2019328.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +720 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1735539931.86790b443086
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00defbd4f92998dd448d52a8b492243ff9b3b8e1f1173d2ce6b5fe2ee6e6bc41
|
3 |
+
size 199798
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 9.37 +/- 4.81
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r amanoyaku/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000961_3936256_reward_24.588.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b23be1b9fc584345742c9b26af2702dcf4a77d340ef267151fda97a674852183
|
3 |
+
size 34929051
|
checkpoint_p0/checkpoint_000000493_2019328.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb0e1c4b2cff3526394cdfa8e6f0788b7669894f195eef69da9bbbeea9dca4c6
|
3 |
+
size 34929541
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32c23236e4f4968c9d04dd2e1be29c2ede946dba325926ab496cff81fed9669e
|
3 |
+
size 34929541
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/content/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45cd84a6ee1d3017086bda38ef0acb5ecfccbdeef015939c27707b8b1652b347
|
3 |
+
size 17223963
|
sf_log.txt
ADDED
@@ -0,0 +1,720 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2024-12-30 06:25:36,744][00704] Saving configuration to /content/train_dir/default_experiment/config.json...
|
2 |
+
[2024-12-30 06:25:36,747][00704] Rollout worker 0 uses device cpu
|
3 |
+
[2024-12-30 06:25:36,748][00704] Rollout worker 1 uses device cpu
|
4 |
+
[2024-12-30 06:25:36,749][00704] Rollout worker 2 uses device cpu
|
5 |
+
[2024-12-30 06:25:36,750][00704] Rollout worker 3 uses device cpu
|
6 |
+
[2024-12-30 06:25:36,752][00704] Rollout worker 4 uses device cpu
|
7 |
+
[2024-12-30 06:25:36,753][00704] Rollout worker 5 uses device cpu
|
8 |
+
[2024-12-30 06:25:36,754][00704] Rollout worker 6 uses device cpu
|
9 |
+
[2024-12-30 06:25:36,755][00704] Rollout worker 7 uses device cpu
|
10 |
+
[2024-12-30 06:25:36,860][00704] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2024-12-30 06:25:36,862][00704] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2024-12-30 06:25:36,894][00704] Starting all processes...
|
13 |
+
[2024-12-30 06:25:36,896][00704] Starting process learner_proc0
|
14 |
+
[2024-12-30 06:25:36,941][00704] Starting all processes...
|
15 |
+
[2024-12-30 06:25:36,947][00704] Starting process inference_proc0-0
|
16 |
+
[2024-12-30 06:25:36,948][00704] Starting process rollout_proc0
|
17 |
+
[2024-12-30 06:25:36,951][00704] Starting process rollout_proc1
|
18 |
+
[2024-12-30 06:25:36,951][00704] Starting process rollout_proc2
|
19 |
+
[2024-12-30 06:25:36,954][00704] Starting process rollout_proc3
|
20 |
+
[2024-12-30 06:25:36,959][00704] Starting process rollout_proc4
|
21 |
+
[2024-12-30 06:25:36,965][00704] Starting process rollout_proc5
|
22 |
+
[2024-12-30 06:25:36,968][00704] Starting process rollout_proc6
|
23 |
+
[2024-12-30 06:25:36,970][00704] Starting process rollout_proc7
|
24 |
+
[2024-12-30 06:25:39,825][02856] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
25 |
+
[2024-12-30 06:25:39,874][02858] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
26 |
+
[2024-12-30 06:25:39,880][02853] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
27 |
+
[2024-12-30 06:25:39,881][02853] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
28 |
+
[2024-12-30 06:25:39,900][02853] Num visible devices: 1
|
29 |
+
[2024-12-30 06:25:40,089][02854] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
30 |
+
[2024-12-30 06:25:40,150][02840] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
31 |
+
[2024-12-30 06:25:40,150][02840] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
32 |
+
[2024-12-30 06:25:40,165][02840] Num visible devices: 1
|
33 |
+
[2024-12-30 06:25:40,188][02840] Starting seed is not provided
|
34 |
+
[2024-12-30 06:25:40,189][02840] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
35 |
+
[2024-12-30 06:25:40,189][02840] Initializing actor-critic model on device cuda:0
|
36 |
+
[2024-12-30 06:25:40,189][02840] RunningMeanStd input shape: (3, 72, 128)
|
37 |
+
[2024-12-30 06:25:40,192][02840] RunningMeanStd input shape: (1,)
|
38 |
+
[2024-12-30 06:25:40,205][02840] ConvEncoder: input_channels=3
|
39 |
+
[2024-12-30 06:25:40,214][02857] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
40 |
+
[2024-12-30 06:25:40,394][02855] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
41 |
+
[2024-12-30 06:25:40,439][02859] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
42 |
+
[2024-12-30 06:25:40,471][02860] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
43 |
+
[2024-12-30 06:25:40,510][02861] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
44 |
+
[2024-12-30 06:25:40,510][02840] Conv encoder output size: 512
|
45 |
+
[2024-12-30 06:25:40,511][02840] Policy head output size: 512
|
46 |
+
[2024-12-30 06:25:40,563][02840] Created Actor Critic model with architecture:
|
47 |
+
[2024-12-30 06:25:40,564][02840] ActorCriticSharedWeights(
|
48 |
+
(obs_normalizer): ObservationNormalizer(
|
49 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
50 |
+
(running_mean_std): ModuleDict(
|
51 |
+
(obs): RunningMeanStdInPlace()
|
52 |
+
)
|
53 |
+
)
|
54 |
+
)
|
55 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
56 |
+
(encoder): VizdoomEncoder(
|
57 |
+
(basic_encoder): ConvEncoder(
|
58 |
+
(enc): RecursiveScriptModule(
|
59 |
+
original_name=ConvEncoderImpl
|
60 |
+
(conv_head): RecursiveScriptModule(
|
61 |
+
original_name=Sequential
|
62 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
63 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
64 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
65 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
66 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
67 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
68 |
+
)
|
69 |
+
(mlp_layers): RecursiveScriptModule(
|
70 |
+
original_name=Sequential
|
71 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
72 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(core): ModelCoreRNN(
|
78 |
+
(core): GRU(512, 512)
|
79 |
+
)
|
80 |
+
(decoder): MlpDecoder(
|
81 |
+
(mlp): Identity()
|
82 |
+
)
|
83 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
84 |
+
(action_parameterization): ActionParameterizationDefault(
|
85 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
[2024-12-30 06:25:40,838][02840] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2024-12-30 06:25:44,231][02840] No checkpoints found
|
90 |
+
[2024-12-30 06:25:44,231][02840] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2024-12-30 06:25:44,232][02840] Initialized policy 0 weights for model version 0
|
92 |
+
[2024-12-30 06:25:44,235][02840] LearnerWorker_p0 finished initialization!
|
93 |
+
[2024-12-30 06:25:44,235][02840] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2024-12-30 06:25:44,309][02853] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2024-12-30 06:25:44,310][02853] RunningMeanStd input shape: (1,)
|
96 |
+
[2024-12-30 06:25:44,323][02853] ConvEncoder: input_channels=3
|
97 |
+
[2024-12-30 06:25:44,430][02853] Conv encoder output size: 512
|
98 |
+
[2024-12-30 06:25:44,431][02853] Policy head output size: 512
|
99 |
+
[2024-12-30 06:25:44,482][00704] Inference worker 0-0 is ready!
|
100 |
+
[2024-12-30 06:25:44,483][00704] All inference workers are ready! Signal rollout workers to start!
|
101 |
+
[2024-12-30 06:25:44,517][02861] Doom resolution: 160x120, resize resolution: (128, 72)
|
102 |
+
[2024-12-30 06:25:44,517][02858] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2024-12-30 06:25:44,517][02857] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2024-12-30 06:25:44,517][02860] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2024-12-30 06:25:44,537][02855] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2024-12-30 06:25:44,537][02854] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2024-12-30 06:25:44,537][02859] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2024-12-30 06:25:44,537][02856] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2024-12-30 06:25:44,831][02856] Decorrelating experience for 0 frames...
|
110 |
+
[2024-12-30 06:25:44,831][02859] Decorrelating experience for 0 frames...
|
111 |
+
[2024-12-30 06:25:44,831][02858] Decorrelating experience for 0 frames...
|
112 |
+
[2024-12-30 06:25:44,831][02861] Decorrelating experience for 0 frames...
|
113 |
+
[2024-12-30 06:25:44,831][02860] Decorrelating experience for 0 frames...
|
114 |
+
[2024-12-30 06:25:44,906][02857] Decorrelating experience for 0 frames...
|
115 |
+
[2024-12-30 06:25:44,941][02855] Decorrelating experience for 0 frames...
|
116 |
+
[2024-12-30 06:25:45,070][02859] Decorrelating experience for 32 frames...
|
117 |
+
[2024-12-30 06:25:45,071][02856] Decorrelating experience for 32 frames...
|
118 |
+
[2024-12-30 06:25:45,095][02854] Decorrelating experience for 0 frames...
|
119 |
+
[2024-12-30 06:25:45,105][02861] Decorrelating experience for 32 frames...
|
120 |
+
[2024-12-30 06:25:45,186][02857] Decorrelating experience for 32 frames...
|
121 |
+
[2024-12-30 06:25:45,329][02860] Decorrelating experience for 32 frames...
|
122 |
+
[2024-12-30 06:25:45,338][02854] Decorrelating experience for 32 frames...
|
123 |
+
[2024-12-30 06:25:45,376][02858] Decorrelating experience for 32 frames...
|
124 |
+
[2024-12-30 06:25:45,383][02855] Decorrelating experience for 32 frames...
|
125 |
+
[2024-12-30 06:25:45,458][02856] Decorrelating experience for 64 frames...
|
126 |
+
[2024-12-30 06:25:45,475][02859] Decorrelating experience for 64 frames...
|
127 |
+
[2024-12-30 06:25:45,634][02857] Decorrelating experience for 64 frames...
|
128 |
+
[2024-12-30 06:25:45,695][02860] Decorrelating experience for 64 frames...
|
129 |
+
[2024-12-30 06:25:45,696][02854] Decorrelating experience for 64 frames...
|
130 |
+
[2024-12-30 06:25:45,699][02858] Decorrelating experience for 64 frames...
|
131 |
+
[2024-12-30 06:25:45,770][02856] Decorrelating experience for 96 frames...
|
132 |
+
[2024-12-30 06:25:45,919][02855] Decorrelating experience for 64 frames...
|
133 |
+
[2024-12-30 06:25:45,968][02857] Decorrelating experience for 96 frames...
|
134 |
+
[2024-12-30 06:25:45,990][02854] Decorrelating experience for 96 frames...
|
135 |
+
[2024-12-30 06:25:46,004][02858] Decorrelating experience for 96 frames...
|
136 |
+
[2024-12-30 06:25:46,017][02859] Decorrelating experience for 96 frames...
|
137 |
+
[2024-12-30 06:25:46,065][02860] Decorrelating experience for 96 frames...
|
138 |
+
[2024-12-30 06:25:46,214][02861] Decorrelating experience for 64 frames...
|
139 |
+
[2024-12-30 06:25:46,242][02855] Decorrelating experience for 96 frames...
|
140 |
+
[2024-12-30 06:25:46,487][02861] Decorrelating experience for 96 frames...
|
141 |
+
[2024-12-30 06:25:46,690][00704] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
142 |
+
[2024-12-30 06:25:48,011][02840] Signal inference workers to stop experience collection...
|
143 |
+
[2024-12-30 06:25:48,016][02853] InferenceWorker_p0-w0: stopping experience collection
|
144 |
+
[2024-12-30 06:25:50,427][02840] Signal inference workers to resume experience collection...
|
145 |
+
[2024-12-30 06:25:50,428][02853] InferenceWorker_p0-w0: resuming experience collection
|
146 |
+
[2024-12-30 06:25:51,690][00704] Fps is (10 sec: 4915.1, 60 sec: 4915.1, 300 sec: 4915.1). Total num frames: 24576. Throughput: 0: 512.4. Samples: 2562. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
147 |
+
[2024-12-30 06:25:51,692][00704] Avg episode reward: [(0, '3.529')]
|
148 |
+
[2024-12-30 06:25:52,337][02853] Updated weights for policy 0, policy_version 10 (0.0152)
|
149 |
+
[2024-12-30 06:25:54,480][02853] Updated weights for policy 0, policy_version 20 (0.0013)
|
150 |
+
[2024-12-30 06:25:56,547][02853] Updated weights for policy 0, policy_version 30 (0.0014)
|
151 |
+
[2024-12-30 06:25:56,690][00704] Fps is (10 sec: 12287.9, 60 sec: 12287.9, 300 sec: 12287.9). Total num frames: 122880. Throughput: 0: 3076.4. Samples: 30764. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
|
152 |
+
[2024-12-30 06:25:56,693][00704] Avg episode reward: [(0, '4.386')]
|
153 |
+
[2024-12-30 06:25:56,695][02840] Saving new best policy, reward=4.386!
|
154 |
+
[2024-12-30 06:25:56,852][00704] Heartbeat connected on Batcher_0
|
155 |
+
[2024-12-30 06:25:56,855][00704] Heartbeat connected on LearnerWorker_p0
|
156 |
+
[2024-12-30 06:25:56,865][00704] Heartbeat connected on InferenceWorker_p0-w0
|
157 |
+
[2024-12-30 06:25:56,868][00704] Heartbeat connected on RolloutWorker_w0
|
158 |
+
[2024-12-30 06:25:56,874][00704] Heartbeat connected on RolloutWorker_w1
|
159 |
+
[2024-12-30 06:25:56,877][00704] Heartbeat connected on RolloutWorker_w2
|
160 |
+
[2024-12-30 06:25:56,883][00704] Heartbeat connected on RolloutWorker_w4
|
161 |
+
[2024-12-30 06:25:56,884][00704] Heartbeat connected on RolloutWorker_w3
|
162 |
+
[2024-12-30 06:25:56,887][00704] Heartbeat connected on RolloutWorker_w5
|
163 |
+
[2024-12-30 06:25:56,890][00704] Heartbeat connected on RolloutWorker_w6
|
164 |
+
[2024-12-30 06:25:56,893][00704] Heartbeat connected on RolloutWorker_w7
|
165 |
+
[2024-12-30 06:25:58,595][02853] Updated weights for policy 0, policy_version 40 (0.0013)
|
166 |
+
[2024-12-30 06:26:00,626][02853] Updated weights for policy 0, policy_version 50 (0.0013)
|
167 |
+
[2024-12-30 06:26:01,690][00704] Fps is (10 sec: 20069.8, 60 sec: 15018.3, 300 sec: 15018.3). Total num frames: 225280. Throughput: 0: 3052.6. Samples: 45790. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
|
168 |
+
[2024-12-30 06:26:01,693][00704] Avg episode reward: [(0, '4.307')]
|
169 |
+
[2024-12-30 06:26:02,662][02853] Updated weights for policy 0, policy_version 60 (0.0013)
|
170 |
+
[2024-12-30 06:26:04,704][02853] Updated weights for policy 0, policy_version 70 (0.0013)
|
171 |
+
[2024-12-30 06:26:06,690][00704] Fps is (10 sec: 20070.6, 60 sec: 16179.2, 300 sec: 16179.2). Total num frames: 323584. Throughput: 0: 3806.3. Samples: 76126. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
172 |
+
[2024-12-30 06:26:06,692][00704] Avg episode reward: [(0, '4.323')]
|
173 |
+
[2024-12-30 06:26:06,757][02853] Updated weights for policy 0, policy_version 80 (0.0013)
|
174 |
+
[2024-12-30 06:26:08,888][02853] Updated weights for policy 0, policy_version 90 (0.0014)
|
175 |
+
[2024-12-30 06:26:10,953][02853] Updated weights for policy 0, policy_version 100 (0.0013)
|
176 |
+
[2024-12-30 06:26:11,690][00704] Fps is (10 sec: 19661.3, 60 sec: 16875.5, 300 sec: 16875.5). Total num frames: 421888. Throughput: 0: 4215.8. Samples: 105396. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
177 |
+
[2024-12-30 06:26:11,692][00704] Avg episode reward: [(0, '4.506')]
|
178 |
+
[2024-12-30 06:26:11,701][02840] Saving new best policy, reward=4.506!
|
179 |
+
[2024-12-30 06:26:13,048][02853] Updated weights for policy 0, policy_version 110 (0.0013)
|
180 |
+
[2024-12-30 06:26:15,048][02853] Updated weights for policy 0, policy_version 120 (0.0013)
|
181 |
+
[2024-12-30 06:26:16,690][00704] Fps is (10 sec: 20070.2, 60 sec: 17476.2, 300 sec: 17476.2). Total num frames: 524288. Throughput: 0: 4017.5. Samples: 120526. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
182 |
+
[2024-12-30 06:26:16,692][00704] Avg episode reward: [(0, '4.687')]
|
183 |
+
[2024-12-30 06:26:16,694][02840] Saving new best policy, reward=4.687!
|
184 |
+
[2024-12-30 06:26:17,064][02853] Updated weights for policy 0, policy_version 130 (0.0012)
|
185 |
+
[2024-12-30 06:26:19,090][02853] Updated weights for policy 0, policy_version 140 (0.0013)
|
186 |
+
[2024-12-30 06:26:21,173][02853] Updated weights for policy 0, policy_version 150 (0.0013)
|
187 |
+
[2024-12-30 06:26:21,690][00704] Fps is (10 sec: 20070.4, 60 sec: 17788.3, 300 sec: 17788.3). Total num frames: 622592. Throughput: 0: 4306.9. Samples: 150742. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
188 |
+
[2024-12-30 06:26:21,693][00704] Avg episode reward: [(0, '4.528')]
|
189 |
+
[2024-12-30 06:26:23,327][02853] Updated weights for policy 0, policy_version 160 (0.0013)
|
190 |
+
[2024-12-30 06:26:25,405][02853] Updated weights for policy 0, policy_version 170 (0.0013)
|
191 |
+
[2024-12-30 06:26:26,690][00704] Fps is (10 sec: 19660.8, 60 sec: 18022.4, 300 sec: 18022.4). Total num frames: 720896. Throughput: 0: 4506.1. Samples: 180246. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
192 |
+
[2024-12-30 06:26:26,693][00704] Avg episode reward: [(0, '4.670')]
|
193 |
+
[2024-12-30 06:26:27,401][02853] Updated weights for policy 0, policy_version 180 (0.0013)
|
194 |
+
[2024-12-30 06:26:29,410][02853] Updated weights for policy 0, policy_version 190 (0.0013)
|
195 |
+
[2024-12-30 06:26:31,440][02853] Updated weights for policy 0, policy_version 200 (0.0013)
|
196 |
+
[2024-12-30 06:26:31,690][00704] Fps is (10 sec: 20070.5, 60 sec: 18295.4, 300 sec: 18295.4). Total num frames: 823296. Throughput: 0: 4344.4. Samples: 195500. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
197 |
+
[2024-12-30 06:26:31,692][00704] Avg episode reward: [(0, '4.595')]
|
198 |
+
[2024-12-30 06:26:33,471][02853] Updated weights for policy 0, policy_version 210 (0.0013)
|
199 |
+
[2024-12-30 06:26:35,551][02853] Updated weights for policy 0, policy_version 220 (0.0013)
|
200 |
+
[2024-12-30 06:26:36,690][00704] Fps is (10 sec: 20070.2, 60 sec: 18431.9, 300 sec: 18431.9). Total num frames: 921600. Throughput: 0: 4956.1. Samples: 225588. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
201 |
+
[2024-12-30 06:26:36,692][00704] Avg episode reward: [(0, '4.693')]
|
202 |
+
[2024-12-30 06:26:36,694][02840] Saving new best policy, reward=4.693!
|
203 |
+
[2024-12-30 06:26:37,661][02853] Updated weights for policy 0, policy_version 230 (0.0013)
|
204 |
+
[2024-12-30 06:26:39,720][02853] Updated weights for policy 0, policy_version 240 (0.0013)
|
205 |
+
[2024-12-30 06:26:41,690][00704] Fps is (10 sec: 19660.8, 60 sec: 18543.7, 300 sec: 18543.7). Total num frames: 1019904. Throughput: 0: 4987.6. Samples: 255204. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
206 |
+
[2024-12-30 06:26:41,692][00704] Avg episode reward: [(0, '4.915')]
|
207 |
+
[2024-12-30 06:26:41,699][02840] Saving new best policy, reward=4.915!
|
208 |
+
[2024-12-30 06:26:41,815][02853] Updated weights for policy 0, policy_version 250 (0.0013)
|
209 |
+
[2024-12-30 06:26:43,832][02853] Updated weights for policy 0, policy_version 260 (0.0013)
|
210 |
+
[2024-12-30 06:26:45,874][02853] Updated weights for policy 0, policy_version 270 (0.0013)
|
211 |
+
[2024-12-30 06:26:46,690][00704] Fps is (10 sec: 20070.7, 60 sec: 18705.1, 300 sec: 18705.1). Total num frames: 1122304. Throughput: 0: 4984.8. Samples: 270102. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
212 |
+
[2024-12-30 06:26:46,692][00704] Avg episode reward: [(0, '5.186')]
|
213 |
+
[2024-12-30 06:26:46,694][02840] Saving new best policy, reward=5.186!
|
214 |
+
[2024-12-30 06:26:47,930][02853] Updated weights for policy 0, policy_version 280 (0.0013)
|
215 |
+
[2024-12-30 06:26:50,062][02853] Updated weights for policy 0, policy_version 290 (0.0012)
|
216 |
+
[2024-12-30 06:26:51,690][00704] Fps is (10 sec: 19660.9, 60 sec: 19865.6, 300 sec: 18715.6). Total num frames: 1216512. Throughput: 0: 4966.0. Samples: 299596. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
217 |
+
[2024-12-30 06:26:51,692][00704] Avg episode reward: [(0, '5.257')]
|
218 |
+
[2024-12-30 06:26:51,698][02840] Saving new best policy, reward=5.257!
|
219 |
+
[2024-12-30 06:26:52,181][02853] Updated weights for policy 0, policy_version 300 (0.0013)
|
220 |
+
[2024-12-30 06:26:54,202][02853] Updated weights for policy 0, policy_version 310 (0.0013)
|
221 |
+
[2024-12-30 06:26:56,240][02853] Updated weights for policy 0, policy_version 320 (0.0013)
|
222 |
+
[2024-12-30 06:26:56,690][00704] Fps is (10 sec: 19660.6, 60 sec: 19933.9, 300 sec: 18841.6). Total num frames: 1318912. Throughput: 0: 4982.5. Samples: 329608. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
223 |
+
[2024-12-30 06:26:56,692][00704] Avg episode reward: [(0, '5.775')]
|
224 |
+
[2024-12-30 06:26:56,695][02840] Saving new best policy, reward=5.775!
|
225 |
+
[2024-12-30 06:26:58,259][02853] Updated weights for policy 0, policy_version 330 (0.0013)
|
226 |
+
[2024-12-30 06:27:00,256][02853] Updated weights for policy 0, policy_version 340 (0.0013)
|
227 |
+
[2024-12-30 06:27:01,690][00704] Fps is (10 sec: 20480.1, 60 sec: 19934.0, 300 sec: 18950.8). Total num frames: 1421312. Throughput: 0: 4985.4. Samples: 344870. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
228 |
+
[2024-12-30 06:27:01,692][00704] Avg episode reward: [(0, '6.335')]
|
229 |
+
[2024-12-30 06:27:01,698][02840] Saving new best policy, reward=6.335!
|
230 |
+
[2024-12-30 06:27:02,292][02853] Updated weights for policy 0, policy_version 350 (0.0013)
|
231 |
+
[2024-12-30 06:27:04,442][02853] Updated weights for policy 0, policy_version 360 (0.0013)
|
232 |
+
[2024-12-30 06:27:06,536][02853] Updated weights for policy 0, policy_version 370 (0.0013)
|
233 |
+
[2024-12-30 06:27:06,690][00704] Fps is (10 sec: 19660.8, 60 sec: 19865.6, 300 sec: 18944.0). Total num frames: 1515520. Throughput: 0: 4970.9. Samples: 374434. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
234 |
+
[2024-12-30 06:27:06,692][00704] Avg episode reward: [(0, '6.616')]
|
235 |
+
[2024-12-30 06:27:06,695][02840] Saving new best policy, reward=6.616!
|
236 |
+
[2024-12-30 06:27:08,547][02853] Updated weights for policy 0, policy_version 380 (0.0012)
|
237 |
+
[2024-12-30 06:27:10,551][02853] Updated weights for policy 0, policy_version 390 (0.0013)
|
238 |
+
[2024-12-30 06:27:11,690][00704] Fps is (10 sec: 19660.9, 60 sec: 19933.9, 300 sec: 19034.4). Total num frames: 1617920. Throughput: 0: 4991.2. Samples: 404850. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
239 |
+
[2024-12-30 06:27:11,692][00704] Avg episode reward: [(0, '6.960')]
|
240 |
+
[2024-12-30 06:27:11,699][02840] Saving new best policy, reward=6.960!
|
241 |
+
[2024-12-30 06:27:12,587][02853] Updated weights for policy 0, policy_version 400 (0.0013)
|
242 |
+
[2024-12-30 06:27:14,615][02853] Updated weights for policy 0, policy_version 410 (0.0013)
|
243 |
+
[2024-12-30 06:27:16,634][02853] Updated weights for policy 0, policy_version 420 (0.0012)
|
244 |
+
[2024-12-30 06:27:16,690][00704] Fps is (10 sec: 20480.1, 60 sec: 19933.9, 300 sec: 19114.7). Total num frames: 1720320. Throughput: 0: 4988.4. Samples: 419980. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
245 |
+
[2024-12-30 06:27:16,692][00704] Avg episode reward: [(0, '7.441')]
|
246 |
+
[2024-12-30 06:27:16,694][02840] Saving new best policy, reward=7.441!
|
247 |
+
[2024-12-30 06:27:18,765][02853] Updated weights for policy 0, policy_version 430 (0.0013)
|
248 |
+
[2024-12-30 06:27:20,848][02853] Updated weights for policy 0, policy_version 440 (0.0013)
|
249 |
+
[2024-12-30 06:27:21,690][00704] Fps is (10 sec: 20070.2, 60 sec: 19933.9, 300 sec: 19143.4). Total num frames: 1818624. Throughput: 0: 4978.9. Samples: 449636. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
250 |
+
[2024-12-30 06:27:21,692][00704] Avg episode reward: [(0, '7.938')]
|
251 |
+
[2024-12-30 06:27:21,699][02840] Saving new best policy, reward=7.938!
|
252 |
+
[2024-12-30 06:27:22,842][02853] Updated weights for policy 0, policy_version 450 (0.0013)
|
253 |
+
[2024-12-30 06:27:24,862][02853] Updated weights for policy 0, policy_version 460 (0.0013)
|
254 |
+
[2024-12-30 06:27:26,690][00704] Fps is (10 sec: 20070.3, 60 sec: 20002.1, 300 sec: 19210.2). Total num frames: 1921024. Throughput: 0: 4996.8. Samples: 480058. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
255 |
+
[2024-12-30 06:27:26,692][00704] Avg episode reward: [(0, '8.467')]
|
256 |
+
[2024-12-30 06:27:26,695][02840] Saving new best policy, reward=8.467!
|
257 |
+
[2024-12-30 06:27:26,886][02853] Updated weights for policy 0, policy_version 470 (0.0013)
|
258 |
+
[2024-12-30 06:27:28,907][02853] Updated weights for policy 0, policy_version 480 (0.0013)
|
259 |
+
[2024-12-30 06:27:30,963][02853] Updated weights for policy 0, policy_version 490 (0.0013)
|
260 |
+
[2024-12-30 06:27:31,690][00704] Fps is (10 sec: 20070.2, 60 sec: 19933.8, 300 sec: 19231.7). Total num frames: 2019328. Throughput: 0: 5001.1. Samples: 495150. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
261 |
+
[2024-12-30 06:27:31,693][00704] Avg episode reward: [(0, '8.891')]
|
262 |
+
[2024-12-30 06:27:31,700][02840] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000493_2019328.pth...
|
263 |
+
[2024-12-30 06:27:31,772][02840] Saving new best policy, reward=8.891!
|
264 |
+
[2024-12-30 06:27:33,106][02853] Updated weights for policy 0, policy_version 500 (0.0014)
|
265 |
+
[2024-12-30 06:27:35,135][02853] Updated weights for policy 0, policy_version 510 (0.0013)
|
266 |
+
[2024-12-30 06:27:36,690][00704] Fps is (10 sec: 19660.7, 60 sec: 19933.9, 300 sec: 19251.2). Total num frames: 2117632. Throughput: 0: 5002.2. Samples: 524694. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
267 |
+
[2024-12-30 06:27:36,692][00704] Avg episode reward: [(0, '10.369')]
|
268 |
+
[2024-12-30 06:27:36,694][02840] Saving new best policy, reward=10.369!
|
269 |
+
[2024-12-30 06:27:37,152][02853] Updated weights for policy 0, policy_version 520 (0.0013)
|
270 |
+
[2024-12-30 06:27:39,157][02853] Updated weights for policy 0, policy_version 530 (0.0013)
|
271 |
+
[2024-12-30 06:27:41,181][02853] Updated weights for policy 0, policy_version 540 (0.0013)
|
272 |
+
[2024-12-30 06:27:41,690][00704] Fps is (10 sec: 20070.5, 60 sec: 20002.1, 300 sec: 19304.6). Total num frames: 2220032. Throughput: 0: 5013.8. Samples: 555228. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
273 |
+
[2024-12-30 06:27:41,693][00704] Avg episode reward: [(0, '12.016')]
|
274 |
+
[2024-12-30 06:27:41,699][02840] Saving new best policy, reward=12.016!
|
275 |
+
[2024-12-30 06:27:43,206][02853] Updated weights for policy 0, policy_version 550 (0.0013)
|
276 |
+
[2024-12-30 06:27:45,233][02853] Updated weights for policy 0, policy_version 560 (0.0013)
|
277 |
+
[2024-12-30 06:27:46,690][00704] Fps is (10 sec: 20480.3, 60 sec: 20002.1, 300 sec: 19353.6). Total num frames: 2322432. Throughput: 0: 5010.7. Samples: 570352. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
278 |
+
[2024-12-30 06:27:46,692][00704] Avg episode reward: [(0, '11.994')]
|
279 |
+
[2024-12-30 06:27:47,307][02853] Updated weights for policy 0, policy_version 570 (0.0013)
|
280 |
+
[2024-12-30 06:27:49,359][02853] Updated weights for policy 0, policy_version 580 (0.0013)
|
281 |
+
[2024-12-30 06:27:51,383][02853] Updated weights for policy 0, policy_version 590 (0.0013)
|
282 |
+
[2024-12-30 06:27:51,690][00704] Fps is (10 sec: 20070.3, 60 sec: 20070.4, 300 sec: 19365.9). Total num frames: 2420736. Throughput: 0: 5020.0. Samples: 600334. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
283 |
+
[2024-12-30 06:27:51,693][00704] Avg episode reward: [(0, '13.268')]
|
284 |
+
[2024-12-30 06:27:51,699][02840] Saving new best policy, reward=13.268!
|
285 |
+
[2024-12-30 06:27:53,398][02853] Updated weights for policy 0, policy_version 600 (0.0013)
|
286 |
+
[2024-12-30 06:27:55,394][02853] Updated weights for policy 0, policy_version 610 (0.0013)
|
287 |
+
[2024-12-30 06:27:56,690][00704] Fps is (10 sec: 20070.3, 60 sec: 20070.4, 300 sec: 19408.7). Total num frames: 2523136. Throughput: 0: 5023.7. Samples: 630918. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
288 |
+
[2024-12-30 06:27:56,692][00704] Avg episode reward: [(0, '15.725')]
|
289 |
+
[2024-12-30 06:27:56,694][02840] Saving new best policy, reward=15.725!
|
290 |
+
[2024-12-30 06:27:57,394][02853] Updated weights for policy 0, policy_version 620 (0.0013)
|
291 |
+
[2024-12-30 06:27:59,504][02853] Updated weights for policy 0, policy_version 630 (0.0014)
|
292 |
+
[2024-12-30 06:28:01,611][02853] Updated weights for policy 0, policy_version 640 (0.0013)
|
293 |
+
[2024-12-30 06:28:01,690][00704] Fps is (10 sec: 20070.4, 60 sec: 20002.1, 300 sec: 19418.1). Total num frames: 2621440. Throughput: 0: 5018.4. Samples: 645810. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
294 |
+
[2024-12-30 06:28:01,693][00704] Avg episode reward: [(0, '14.407')]
|
295 |
+
[2024-12-30 06:28:03,620][02853] Updated weights for policy 0, policy_version 650 (0.0013)
|
296 |
+
[2024-12-30 06:28:05,636][02853] Updated weights for policy 0, policy_version 660 (0.0012)
|
297 |
+
[2024-12-30 06:28:06,690][00704] Fps is (10 sec: 20070.6, 60 sec: 20138.7, 300 sec: 19456.0). Total num frames: 2723840. Throughput: 0: 5027.9. Samples: 675890. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
298 |
+
[2024-12-30 06:28:06,693][00704] Avg episode reward: [(0, '17.806')]
|
299 |
+
[2024-12-30 06:28:06,695][02840] Saving new best policy, reward=17.806!
|
300 |
+
[2024-12-30 06:28:07,649][02853] Updated weights for policy 0, policy_version 670 (0.0013)
|
301 |
+
[2024-12-30 06:28:09,638][02853] Updated weights for policy 0, policy_version 680 (0.0013)
|
302 |
+
[2024-12-30 06:28:11,628][02853] Updated weights for policy 0, policy_version 690 (0.0012)
|
303 |
+
[2024-12-30 06:28:11,690][00704] Fps is (10 sec: 20480.0, 60 sec: 20138.6, 300 sec: 19491.3). Total num frames: 2826240. Throughput: 0: 5035.6. Samples: 706660. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
304 |
+
[2024-12-30 06:28:11,693][00704] Avg episode reward: [(0, '18.256')]
|
305 |
+
[2024-12-30 06:28:11,699][02840] Saving new best policy, reward=18.256!
|
306 |
+
[2024-12-30 06:28:13,754][02853] Updated weights for policy 0, policy_version 700 (0.0014)
|
307 |
+
[2024-12-30 06:28:15,836][02853] Updated weights for policy 0, policy_version 710 (0.0013)
|
308 |
+
[2024-12-30 06:28:16,690][00704] Fps is (10 sec: 20070.3, 60 sec: 20070.4, 300 sec: 19497.0). Total num frames: 2924544. Throughput: 0: 5022.3. Samples: 721154. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
309 |
+
[2024-12-30 06:28:16,692][00704] Avg episode reward: [(0, '19.306')]
|
310 |
+
[2024-12-30 06:28:16,695][02840] Saving new best policy, reward=19.306!
|
311 |
+
[2024-12-30 06:28:17,845][02853] Updated weights for policy 0, policy_version 720 (0.0013)
|
312 |
+
[2024-12-30 06:28:19,832][02853] Updated weights for policy 0, policy_version 730 (0.0012)
|
313 |
+
[2024-12-30 06:28:21,690][00704] Fps is (10 sec: 20070.5, 60 sec: 20138.7, 300 sec: 19528.7). Total num frames: 3026944. Throughput: 0: 5044.6. Samples: 751702. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
314 |
+
[2024-12-30 06:28:21,692][00704] Avg episode reward: [(0, '22.437')]
|
315 |
+
[2024-12-30 06:28:21,700][02840] Saving new best policy, reward=22.437!
|
316 |
+
[2024-12-30 06:28:21,809][02853] Updated weights for policy 0, policy_version 740 (0.0014)
|
317 |
+
[2024-12-30 06:28:23,808][02853] Updated weights for policy 0, policy_version 750 (0.0013)
|
318 |
+
[2024-12-30 06:28:25,801][02853] Updated weights for policy 0, policy_version 760 (0.0013)
|
319 |
+
[2024-12-30 06:28:26,690][00704] Fps is (10 sec: 20479.9, 60 sec: 20138.7, 300 sec: 19558.4). Total num frames: 3129344. Throughput: 0: 5046.8. Samples: 782332. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
320 |
+
[2024-12-30 06:28:26,693][00704] Avg episode reward: [(0, '22.555')]
|
321 |
+
[2024-12-30 06:28:26,695][02840] Saving new best policy, reward=22.555!
|
322 |
+
[2024-12-30 06:28:27,931][02853] Updated weights for policy 0, policy_version 770 (0.0013)
|
323 |
+
[2024-12-30 06:28:29,998][02853] Updated weights for policy 0, policy_version 780 (0.0013)
|
324 |
+
[2024-12-30 06:28:31,690][00704] Fps is (10 sec: 20070.2, 60 sec: 20138.7, 300 sec: 19561.5). Total num frames: 3227648. Throughput: 0: 5035.5. Samples: 796952. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
325 |
+
[2024-12-30 06:28:31,693][00704] Avg episode reward: [(0, '20.847')]
|
326 |
+
[2024-12-30 06:28:31,991][02853] Updated weights for policy 0, policy_version 790 (0.0013)
|
327 |
+
[2024-12-30 06:28:33,977][02853] Updated weights for policy 0, policy_version 800 (0.0013)
|
328 |
+
[2024-12-30 06:28:36,010][02853] Updated weights for policy 0, policy_version 810 (0.0013)
|
329 |
+
[2024-12-30 06:28:36,690][00704] Fps is (10 sec: 20070.3, 60 sec: 20206.9, 300 sec: 19588.5). Total num frames: 3330048. Throughput: 0: 5049.4. Samples: 827558. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
330 |
+
[2024-12-30 06:28:36,692][00704] Avg episode reward: [(0, '20.993')]
|
331 |
+
[2024-12-30 06:28:38,008][02853] Updated weights for policy 0, policy_version 820 (0.0013)
|
332 |
+
[2024-12-30 06:28:39,995][02853] Updated weights for policy 0, policy_version 830 (0.0013)
|
333 |
+
[2024-12-30 06:28:41,690][00704] Fps is (10 sec: 20480.3, 60 sec: 20207.0, 300 sec: 19614.0). Total num frames: 3432448. Throughput: 0: 5044.9. Samples: 857936. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
334 |
+
[2024-12-30 06:28:41,692][00704] Avg episode reward: [(0, '21.620')]
|
335 |
+
[2024-12-30 06:28:42,109][02853] Updated weights for policy 0, policy_version 840 (0.0013)
|
336 |
+
[2024-12-30 06:28:44,188][02853] Updated weights for policy 0, policy_version 850 (0.0013)
|
337 |
+
[2024-12-30 06:28:46,199][02853] Updated weights for policy 0, policy_version 860 (0.0013)
|
338 |
+
[2024-12-30 06:28:46,690][00704] Fps is (10 sec: 20070.7, 60 sec: 20138.7, 300 sec: 19615.3). Total num frames: 3530752. Throughput: 0: 5042.4. Samples: 872718. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
339 |
+
[2024-12-30 06:28:46,693][00704] Avg episode reward: [(0, '21.922')]
|
340 |
+
[2024-12-30 06:28:48,219][02853] Updated weights for policy 0, policy_version 870 (0.0013)
|
341 |
+
[2024-12-30 06:28:50,205][02853] Updated weights for policy 0, policy_version 880 (0.0012)
|
342 |
+
[2024-12-30 06:28:51,690][00704] Fps is (10 sec: 20070.3, 60 sec: 20207.0, 300 sec: 19638.7). Total num frames: 3633152. Throughput: 0: 5056.4. Samples: 903428. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
343 |
+
[2024-12-30 06:28:51,693][00704] Avg episode reward: [(0, '19.679')]
|
344 |
+
[2024-12-30 06:28:52,207][02853] Updated weights for policy 0, policy_version 890 (0.0013)
|
345 |
+
[2024-12-30 06:28:54,215][02853] Updated weights for policy 0, policy_version 900 (0.0013)
|
346 |
+
[2024-12-30 06:28:56,289][02853] Updated weights for policy 0, policy_version 910 (0.0013)
|
347 |
+
[2024-12-30 06:28:56,690][00704] Fps is (10 sec: 20070.5, 60 sec: 20138.7, 300 sec: 19639.2). Total num frames: 3731456. Throughput: 0: 5044.7. Samples: 933670. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
348 |
+
[2024-12-30 06:28:56,691][00704] Avg episode reward: [(0, '20.748')]
|
349 |
+
[2024-12-30 06:28:58,341][02853] Updated weights for policy 0, policy_version 920 (0.0013)
|
350 |
+
[2024-12-30 06:29:00,357][02853] Updated weights for policy 0, policy_version 930 (0.0012)
|
351 |
+
[2024-12-30 06:29:01,690][00704] Fps is (10 sec: 20070.3, 60 sec: 20206.9, 300 sec: 19660.8). Total num frames: 3833856. Throughput: 0: 5057.5. Samples: 948744. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
352 |
+
[2024-12-30 06:29:01,693][00704] Avg episode reward: [(0, '20.265')]
|
353 |
+
[2024-12-30 06:29:02,347][02853] Updated weights for policy 0, policy_version 940 (0.0013)
|
354 |
+
[2024-12-30 06:29:04,344][02853] Updated weights for policy 0, policy_version 950 (0.0013)
|
355 |
+
[2024-12-30 06:29:06,348][02853] Updated weights for policy 0, policy_version 960 (0.0013)
|
356 |
+
[2024-12-30 06:29:06,690][00704] Fps is (10 sec: 20479.7, 60 sec: 20206.9, 300 sec: 19681.3). Total num frames: 3936256. Throughput: 0: 5062.6. Samples: 979520. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
357 |
+
[2024-12-30 06:29:06,693][00704] Avg episode reward: [(0, '24.588')]
|
358 |
+
[2024-12-30 06:29:06,695][02840] Saving new best policy, reward=24.588!
|
359 |
+
[2024-12-30 06:29:08,365][02853] Updated weights for policy 0, policy_version 970 (0.0013)
|
360 |
+
[2024-12-30 06:29:10,043][02840] Stopping Batcher_0...
|
361 |
+
[2024-12-30 06:29:10,044][02840] Loop batcher_evt_loop terminating...
|
362 |
+
[2024-12-30 06:29:10,044][02840] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
363 |
+
[2024-12-30 06:29:10,043][00704] Component Batcher_0 stopped!
|
364 |
+
[2024-12-30 06:29:10,063][02853] Weights refcount: 2 0
|
365 |
+
[2024-12-30 06:29:10,065][02853] Stopping InferenceWorker_p0-w0...
|
366 |
+
[2024-12-30 06:29:10,065][02853] Loop inference_proc0-0_evt_loop terminating...
|
367 |
+
[2024-12-30 06:29:10,065][00704] Component InferenceWorker_p0-w0 stopped!
|
368 |
+
[2024-12-30 06:29:10,092][02854] Stopping RolloutWorker_w0...
|
369 |
+
[2024-12-30 06:29:10,092][02854] Loop rollout_proc0_evt_loop terminating...
|
370 |
+
[2024-12-30 06:29:10,092][00704] Component RolloutWorker_w0 stopped!
|
371 |
+
[2024-12-30 06:29:10,096][02858] Stopping RolloutWorker_w4...
|
372 |
+
[2024-12-30 06:29:10,097][02858] Loop rollout_proc4_evt_loop terminating...
|
373 |
+
[2024-12-30 06:29:10,098][02859] Stopping RolloutWorker_w5...
|
374 |
+
[2024-12-30 06:29:10,098][02857] Stopping RolloutWorker_w3...
|
375 |
+
[2024-12-30 06:29:10,097][00704] Component RolloutWorker_w4 stopped!
|
376 |
+
[2024-12-30 06:29:10,098][02859] Loop rollout_proc5_evt_loop terminating...
|
377 |
+
[2024-12-30 06:29:10,099][02857] Loop rollout_proc3_evt_loop terminating...
|
378 |
+
[2024-12-30 06:29:10,099][02860] Stopping RolloutWorker_w6...
|
379 |
+
[2024-12-30 06:29:10,100][02860] Loop rollout_proc6_evt_loop terminating...
|
380 |
+
[2024-12-30 06:29:10,101][02855] Stopping RolloutWorker_w1...
|
381 |
+
[2024-12-30 06:29:10,101][02855] Loop rollout_proc1_evt_loop terminating...
|
382 |
+
[2024-12-30 06:29:10,102][02861] Stopping RolloutWorker_w7...
|
383 |
+
[2024-12-30 06:29:10,099][00704] Component RolloutWorker_w5 stopped!
|
384 |
+
[2024-12-30 06:29:10,102][02861] Loop rollout_proc7_evt_loop terminating...
|
385 |
+
[2024-12-30 06:29:10,103][02856] Stopping RolloutWorker_w2...
|
386 |
+
[2024-12-30 06:29:10,104][02856] Loop rollout_proc2_evt_loop terminating...
|
387 |
+
[2024-12-30 06:29:10,103][00704] Component RolloutWorker_w3 stopped!
|
388 |
+
[2024-12-30 06:29:10,106][00704] Component RolloutWorker_w6 stopped!
|
389 |
+
[2024-12-30 06:29:10,107][00704] Component RolloutWorker_w1 stopped!
|
390 |
+
[2024-12-30 06:29:10,108][00704] Component RolloutWorker_w7 stopped!
|
391 |
+
[2024-12-30 06:29:10,110][00704] Component RolloutWorker_w2 stopped!
|
392 |
+
[2024-12-30 06:29:10,123][02840] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
393 |
+
[2024-12-30 06:29:10,249][02840] Stopping LearnerWorker_p0...
|
394 |
+
[2024-12-30 06:29:10,249][02840] Loop learner_proc0_evt_loop terminating...
|
395 |
+
[2024-12-30 06:29:10,249][00704] Component LearnerWorker_p0 stopped!
|
396 |
+
[2024-12-30 06:29:10,255][00704] Waiting for process learner_proc0 to stop...
|
397 |
+
[2024-12-30 06:29:11,162][00704] Waiting for process inference_proc0-0 to join...
|
398 |
+
[2024-12-30 06:29:11,164][00704] Waiting for process rollout_proc0 to join...
|
399 |
+
[2024-12-30 06:29:11,166][00704] Waiting for process rollout_proc1 to join...
|
400 |
+
[2024-12-30 06:29:11,168][00704] Waiting for process rollout_proc2 to join...
|
401 |
+
[2024-12-30 06:29:11,170][00704] Waiting for process rollout_proc3 to join...
|
402 |
+
[2024-12-30 06:29:11,172][00704] Waiting for process rollout_proc4 to join...
|
403 |
+
[2024-12-30 06:29:11,174][00704] Waiting for process rollout_proc5 to join...
|
404 |
+
[2024-12-30 06:29:11,177][00704] Waiting for process rollout_proc6 to join...
|
405 |
+
[2024-12-30 06:29:11,179][00704] Waiting for process rollout_proc7 to join...
|
406 |
+
[2024-12-30 06:29:11,182][00704] Batcher 0 profile tree view:
|
407 |
+
batching: 14.2289, releasing_batches: 0.0245
|
408 |
+
[2024-12-30 06:29:11,183][00704] InferenceWorker_p0-w0 profile tree view:
|
409 |
+
wait_policy: 0.0001
|
410 |
+
wait_policy_total: 3.8212
|
411 |
+
update_model: 3.4245
|
412 |
+
weight_update: 0.0013
|
413 |
+
one_step: 0.0030
|
414 |
+
handle_policy_step: 186.4995
|
415 |
+
deserialize: 7.6981, stack: 1.2701, obs_to_device_normalize: 46.0042, forward: 87.4663, send_messages: 13.4210
|
416 |
+
prepare_outputs: 22.2312
|
417 |
+
to_cpu: 13.8908
|
418 |
+
[2024-12-30 06:29:11,185][00704] Learner 0 profile tree view:
|
419 |
+
misc: 0.0048, prepare_batch: 7.0333
|
420 |
+
train: 19.0639
|
421 |
+
epoch_init: 0.0054, minibatch_init: 0.0061, losses_postprocess: 0.3146, kl_divergence: 0.3569, after_optimizer: 1.8173
|
422 |
+
calculate_losses: 8.7613
|
423 |
+
losses_init: 0.0035, forward_head: 0.6262, bptt_initial: 4.8752, tail: 0.6343, advantages_returns: 0.1538, losses: 1.1934
|
424 |
+
bptt: 1.1038
|
425 |
+
bptt_forward_core: 1.0510
|
426 |
+
update: 7.4510
|
427 |
+
clip: 0.7858
|
428 |
+
[2024-12-30 06:29:11,186][00704] RolloutWorker_w0 profile tree view:
|
429 |
+
wait_for_trajectories: 0.1466, enqueue_policy_requests: 7.6354, env_step: 126.0137, overhead: 6.1451, complete_rollouts: 0.2313
|
430 |
+
save_policy_outputs: 8.8594
|
431 |
+
split_output_tensors: 3.5218
|
432 |
+
[2024-12-30 06:29:11,187][00704] RolloutWorker_w7 profile tree view:
|
433 |
+
wait_for_trajectories: 0.1423, enqueue_policy_requests: 7.5756, env_step: 126.6795, overhead: 6.1321, complete_rollouts: 0.2277
|
434 |
+
save_policy_outputs: 8.9388
|
435 |
+
split_output_tensors: 3.5519
|
436 |
+
[2024-12-30 06:29:11,189][00704] Loop Runner_EvtLoop terminating...
|
437 |
+
[2024-12-30 06:29:11,191][00704] Runner profile tree view:
|
438 |
+
main_loop: 214.2976
|
439 |
+
[2024-12-30 06:29:11,192][00704] Collected {0: 4005888}, FPS: 18693.1
|
440 |
+
[2024-12-30 06:29:30,844][00704] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
|
441 |
+
[2024-12-30 06:29:30,846][00704] Overriding arg 'num_workers' with value 1 passed from command line
|
442 |
+
[2024-12-30 06:29:30,847][00704] Adding new argument 'no_render'=True that is not in the saved config file!
|
443 |
+
[2024-12-30 06:29:30,848][00704] Adding new argument 'save_video'=True that is not in the saved config file!
|
444 |
+
[2024-12-30 06:29:30,850][00704] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
445 |
+
[2024-12-30 06:29:30,851][00704] Adding new argument 'video_name'=None that is not in the saved config file!
|
446 |
+
[2024-12-30 06:29:30,853][00704] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
447 |
+
[2024-12-30 06:29:30,854][00704] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
448 |
+
[2024-12-30 06:29:30,855][00704] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
449 |
+
[2024-12-30 06:29:30,857][00704] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
450 |
+
[2024-12-30 06:29:30,858][00704] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
451 |
+
[2024-12-30 06:29:30,860][00704] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
452 |
+
[2024-12-30 06:29:30,861][00704] Adding new argument 'train_script'=None that is not in the saved config file!
|
453 |
+
[2024-12-30 06:29:30,863][00704] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
454 |
+
[2024-12-30 06:29:30,865][00704] Using frameskip 1 and render_action_repeat=4 for evaluation
|
455 |
+
[2024-12-30 06:29:30,893][00704] Doom resolution: 160x120, resize resolution: (128, 72)
|
456 |
+
[2024-12-30 06:29:30,897][00704] RunningMeanStd input shape: (3, 72, 128)
|
457 |
+
[2024-12-30 06:29:30,899][00704] RunningMeanStd input shape: (1,)
|
458 |
+
[2024-12-30 06:29:30,916][00704] ConvEncoder: input_channels=3
|
459 |
+
[2024-12-30 06:29:31,046][00704] Conv encoder output size: 512
|
460 |
+
[2024-12-30 06:29:31,048][00704] Policy head output size: 512
|
461 |
+
[2024-12-30 06:29:31,210][00704] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
462 |
+
[2024-12-30 06:29:32,009][00704] Num frames 100...
|
463 |
+
[2024-12-30 06:29:32,125][00704] Num frames 200...
|
464 |
+
[2024-12-30 06:29:32,248][00704] Num frames 300...
|
465 |
+
[2024-12-30 06:29:32,370][00704] Num frames 400...
|
466 |
+
[2024-12-30 06:29:32,492][00704] Num frames 500...
|
467 |
+
[2024-12-30 06:29:32,620][00704] Num frames 600...
|
468 |
+
[2024-12-30 06:29:32,744][00704] Num frames 700...
|
469 |
+
[2024-12-30 06:29:32,873][00704] Num frames 800...
|
470 |
+
[2024-12-30 06:29:33,002][00704] Num frames 900...
|
471 |
+
[2024-12-30 06:29:33,092][00704] Avg episode rewards: #0: 19.280, true rewards: #0: 9.280
|
472 |
+
[2024-12-30 06:29:33,094][00704] Avg episode reward: 19.280, avg true_objective: 9.280
|
473 |
+
[2024-12-30 06:29:33,185][00704] Num frames 1000...
|
474 |
+
[2024-12-30 06:29:33,310][00704] Num frames 1100...
|
475 |
+
[2024-12-30 06:29:33,431][00704] Num frames 1200...
|
476 |
+
[2024-12-30 06:29:33,550][00704] Num frames 1300...
|
477 |
+
[2024-12-30 06:29:33,673][00704] Num frames 1400...
|
478 |
+
[2024-12-30 06:29:33,794][00704] Num frames 1500...
|
479 |
+
[2024-12-30 06:29:33,910][00704] Num frames 1600...
|
480 |
+
[2024-12-30 06:29:34,036][00704] Num frames 1700...
|
481 |
+
[2024-12-30 06:29:34,155][00704] Num frames 1800...
|
482 |
+
[2024-12-30 06:29:34,273][00704] Num frames 1900...
|
483 |
+
[2024-12-30 06:29:34,399][00704] Avg episode rewards: #0: 22.790, true rewards: #0: 9.790
|
484 |
+
[2024-12-30 06:29:34,400][00704] Avg episode reward: 22.790, avg true_objective: 9.790
|
485 |
+
[2024-12-30 06:29:34,453][00704] Num frames 2000...
|
486 |
+
[2024-12-30 06:29:34,573][00704] Num frames 2100...
|
487 |
+
[2024-12-30 06:29:34,694][00704] Num frames 2200...
|
488 |
+
[2024-12-30 06:29:34,811][00704] Num frames 2300...
|
489 |
+
[2024-12-30 06:29:34,931][00704] Num frames 2400...
|
490 |
+
[2024-12-30 06:29:35,055][00704] Num frames 2500...
|
491 |
+
[2024-12-30 06:29:35,174][00704] Num frames 2600...
|
492 |
+
[2024-12-30 06:29:35,291][00704] Num frames 2700...
|
493 |
+
[2024-12-30 06:29:35,411][00704] Num frames 2800...
|
494 |
+
[2024-12-30 06:29:35,531][00704] Num frames 2900...
|
495 |
+
[2024-12-30 06:29:35,652][00704] Num frames 3000...
|
496 |
+
[2024-12-30 06:29:35,818][00704] Avg episode rewards: #0: 23.640, true rewards: #0: 10.307
|
497 |
+
[2024-12-30 06:29:35,820][00704] Avg episode reward: 23.640, avg true_objective: 10.307
|
498 |
+
[2024-12-30 06:29:35,831][00704] Num frames 3100...
|
499 |
+
[2024-12-30 06:29:35,948][00704] Num frames 3200...
|
500 |
+
[2024-12-30 06:29:36,073][00704] Num frames 3300...
|
501 |
+
[2024-12-30 06:29:36,195][00704] Num frames 3400...
|
502 |
+
[2024-12-30 06:29:36,314][00704] Num frames 3500...
|
503 |
+
[2024-12-30 06:29:36,433][00704] Num frames 3600...
|
504 |
+
[2024-12-30 06:29:36,553][00704] Num frames 3700...
|
505 |
+
[2024-12-30 06:29:36,670][00704] Num frames 3800...
|
506 |
+
[2024-12-30 06:29:36,788][00704] Num frames 3900...
|
507 |
+
[2024-12-30 06:29:36,909][00704] Num frames 4000...
|
508 |
+
[2024-12-30 06:29:36,988][00704] Avg episode rewards: #0: 23.300, true rewards: #0: 10.050
|
509 |
+
[2024-12-30 06:29:36,990][00704] Avg episode reward: 23.300, avg true_objective: 10.050
|
510 |
+
[2024-12-30 06:29:37,086][00704] Num frames 4100...
|
511 |
+
[2024-12-30 06:29:37,205][00704] Num frames 4200...
|
512 |
+
[2024-12-30 06:29:37,323][00704] Num frames 4300...
|
513 |
+
[2024-12-30 06:29:37,439][00704] Num frames 4400...
|
514 |
+
[2024-12-30 06:29:37,499][00704] Avg episode rewards: #0: 19.408, true rewards: #0: 8.808
|
515 |
+
[2024-12-30 06:29:37,500][00704] Avg episode reward: 19.408, avg true_objective: 8.808
|
516 |
+
[2024-12-30 06:29:37,614][00704] Num frames 4500...
|
517 |
+
[2024-12-30 06:29:37,732][00704] Num frames 4600...
|
518 |
+
[2024-12-30 06:29:37,848][00704] Num frames 4700...
|
519 |
+
[2024-12-30 06:29:37,963][00704] Num frames 4800...
|
520 |
+
[2024-12-30 06:29:38,087][00704] Num frames 4900...
|
521 |
+
[2024-12-30 06:29:38,206][00704] Num frames 5000...
|
522 |
+
[2024-12-30 06:29:38,326][00704] Num frames 5100...
|
523 |
+
[2024-12-30 06:29:38,447][00704] Num frames 5200...
|
524 |
+
[2024-12-30 06:29:38,565][00704] Num frames 5300...
|
525 |
+
[2024-12-30 06:29:38,686][00704] Num frames 5400...
|
526 |
+
[2024-12-30 06:29:38,813][00704] Avg episode rewards: #0: 19.600, true rewards: #0: 9.100
|
527 |
+
[2024-12-30 06:29:38,815][00704] Avg episode reward: 19.600, avg true_objective: 9.100
|
528 |
+
[2024-12-30 06:29:38,864][00704] Num frames 5500...
|
529 |
+
[2024-12-30 06:29:38,981][00704] Num frames 5600...
|
530 |
+
[2024-12-30 06:29:39,100][00704] Num frames 5700...
|
531 |
+
[2024-12-30 06:29:39,222][00704] Num frames 5800...
|
532 |
+
[2024-12-30 06:29:39,339][00704] Num frames 5900...
|
533 |
+
[2024-12-30 06:29:39,454][00704] Num frames 6000...
|
534 |
+
[2024-12-30 06:29:39,575][00704] Num frames 6100...
|
535 |
+
[2024-12-30 06:29:39,695][00704] Num frames 6200...
|
536 |
+
[2024-12-30 06:29:39,817][00704] Num frames 6300...
|
537 |
+
[2024-12-30 06:29:39,939][00704] Num frames 6400...
|
538 |
+
[2024-12-30 06:29:40,059][00704] Num frames 6500...
|
539 |
+
[2024-12-30 06:29:40,178][00704] Num frames 6600...
|
540 |
+
[2024-12-30 06:29:40,296][00704] Num frames 6700...
|
541 |
+
[2024-12-30 06:29:40,440][00704] Avg episode rewards: #0: 21.103, true rewards: #0: 9.674
|
542 |
+
[2024-12-30 06:29:40,442][00704] Avg episode reward: 21.103, avg true_objective: 9.674
|
543 |
+
[2024-12-30 06:29:40,477][00704] Num frames 6800...
|
544 |
+
[2024-12-30 06:29:40,594][00704] Num frames 6900...
|
545 |
+
[2024-12-30 06:29:40,712][00704] Num frames 7000...
|
546 |
+
[2024-12-30 06:29:40,828][00704] Num frames 7100...
|
547 |
+
[2024-12-30 06:29:40,947][00704] Num frames 7200...
|
548 |
+
[2024-12-30 06:29:41,068][00704] Num frames 7300...
|
549 |
+
[2024-12-30 06:29:41,189][00704] Num frames 7400...
|
550 |
+
[2024-12-30 06:29:41,308][00704] Num frames 7500...
|
551 |
+
[2024-12-30 06:29:41,426][00704] Num frames 7600...
|
552 |
+
[2024-12-30 06:29:41,546][00704] Num frames 7700...
|
553 |
+
[2024-12-30 06:29:41,669][00704] Num frames 7800...
|
554 |
+
[2024-12-30 06:29:41,805][00704] Avg episode rewards: #0: 21.584, true rewards: #0: 9.834
|
555 |
+
[2024-12-30 06:29:41,807][00704] Avg episode reward: 21.584, avg true_objective: 9.834
|
556 |
+
[2024-12-30 06:29:41,850][00704] Num frames 7900...
|
557 |
+
[2024-12-30 06:29:41,970][00704] Num frames 8000...
|
558 |
+
[2024-12-30 06:29:42,091][00704] Num frames 8100...
|
559 |
+
[2024-12-30 06:29:42,212][00704] Num frames 8200...
|
560 |
+
[2024-12-30 06:29:42,333][00704] Num frames 8300...
|
561 |
+
[2024-12-30 06:29:42,452][00704] Num frames 8400...
|
562 |
+
[2024-12-30 06:29:42,575][00704] Num frames 8500...
|
563 |
+
[2024-12-30 06:29:42,696][00704] Num frames 8600...
|
564 |
+
[2024-12-30 06:29:42,832][00704] Avg episode rewards: #0: 20.852, true rewards: #0: 9.630
|
565 |
+
[2024-12-30 06:29:42,833][00704] Avg episode reward: 20.852, avg true_objective: 9.630
|
566 |
+
[2024-12-30 06:29:42,876][00704] Num frames 8700...
|
567 |
+
[2024-12-30 06:29:43,001][00704] Num frames 8800...
|
568 |
+
[2024-12-30 06:29:43,125][00704] Num frames 8900...
|
569 |
+
[2024-12-30 06:29:43,252][00704] Num frames 9000...
|
570 |
+
[2024-12-30 06:29:43,382][00704] Num frames 9100...
|
571 |
+
[2024-12-30 06:29:43,505][00704] Num frames 9200...
|
572 |
+
[2024-12-30 06:29:43,629][00704] Num frames 9300...
|
573 |
+
[2024-12-30 06:29:43,754][00704] Num frames 9400...
|
574 |
+
[2024-12-30 06:29:43,878][00704] Num frames 9500...
|
575 |
+
[2024-12-30 06:29:44,002][00704] Num frames 9600...
|
576 |
+
[2024-12-30 06:29:44,126][00704] Num frames 9700...
|
577 |
+
[2024-12-30 06:29:44,263][00704] Num frames 9800...
|
578 |
+
[2024-12-30 06:29:44,390][00704] Num frames 9900...
|
579 |
+
[2024-12-30 06:29:44,515][00704] Num frames 10000...
|
580 |
+
[2024-12-30 06:29:44,641][00704] Num frames 10100...
|
581 |
+
[2024-12-30 06:29:44,769][00704] Num frames 10200...
|
582 |
+
[2024-12-30 06:29:44,895][00704] Num frames 10300...
|
583 |
+
[2024-12-30 06:29:45,067][00704] Avg episode rewards: #0: 23.295, true rewards: #0: 10.395
|
584 |
+
[2024-12-30 06:29:45,069][00704] Avg episode reward: 23.295, avg true_objective: 10.395
|
585 |
+
[2024-12-30 06:30:09,696][00704] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
|
586 |
+
[2024-12-30 06:31:27,179][00704] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
|
587 |
+
[2024-12-30 06:31:27,180][00704] Overriding arg 'num_workers' with value 1 passed from command line
|
588 |
+
[2024-12-30 06:31:27,181][00704] Adding new argument 'no_render'=True that is not in the saved config file!
|
589 |
+
[2024-12-30 06:31:27,183][00704] Adding new argument 'save_video'=True that is not in the saved config file!
|
590 |
+
[2024-12-30 06:31:27,184][00704] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
591 |
+
[2024-12-30 06:31:27,185][00704] Adding new argument 'video_name'=None that is not in the saved config file!
|
592 |
+
[2024-12-30 06:31:27,186][00704] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
593 |
+
[2024-12-30 06:31:27,188][00704] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
594 |
+
[2024-12-30 06:31:27,189][00704] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
595 |
+
[2024-12-30 06:31:27,190][00704] Adding new argument 'hf_repository'='amanoyaku/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
596 |
+
[2024-12-30 06:31:27,191][00704] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
597 |
+
[2024-12-30 06:31:27,193][00704] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
598 |
+
[2024-12-30 06:31:27,194][00704] Adding new argument 'train_script'=None that is not in the saved config file!
|
599 |
+
[2024-12-30 06:31:27,195][00704] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
600 |
+
[2024-12-30 06:31:27,196][00704] Using frameskip 1 and render_action_repeat=4 for evaluation
|
601 |
+
[2024-12-30 06:31:27,220][00704] RunningMeanStd input shape: (3, 72, 128)
|
602 |
+
[2024-12-30 06:31:27,223][00704] RunningMeanStd input shape: (1,)
|
603 |
+
[2024-12-30 06:31:27,234][00704] ConvEncoder: input_channels=3
|
604 |
+
[2024-12-30 06:31:27,272][00704] Conv encoder output size: 512
|
605 |
+
[2024-12-30 06:31:27,274][00704] Policy head output size: 512
|
606 |
+
[2024-12-30 06:31:27,294][00704] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
607 |
+
[2024-12-30 06:31:27,711][00704] Num frames 100...
|
608 |
+
[2024-12-30 06:31:27,829][00704] Num frames 200...
|
609 |
+
[2024-12-30 06:31:27,944][00704] Num frames 300...
|
610 |
+
[2024-12-30 06:31:28,071][00704] Num frames 400...
|
611 |
+
[2024-12-30 06:31:28,187][00704] Num frames 500...
|
612 |
+
[2024-12-30 06:31:28,305][00704] Num frames 600...
|
613 |
+
[2024-12-30 06:31:28,420][00704] Num frames 700...
|
614 |
+
[2024-12-30 06:31:28,537][00704] Num frames 800...
|
615 |
+
[2024-12-30 06:31:28,655][00704] Num frames 900...
|
616 |
+
[2024-12-30 06:31:28,781][00704] Num frames 1000...
|
617 |
+
[2024-12-30 06:31:28,907][00704] Num frames 1100...
|
618 |
+
[2024-12-30 06:31:29,030][00704] Num frames 1200...
|
619 |
+
[2024-12-30 06:31:29,150][00704] Num frames 1300...
|
620 |
+
[2024-12-30 06:31:29,268][00704] Num frames 1400...
|
621 |
+
[2024-12-30 06:31:29,427][00704] Avg episode rewards: #0: 36.820, true rewards: #0: 14.820
|
622 |
+
[2024-12-30 06:31:29,429][00704] Avg episode reward: 36.820, avg true_objective: 14.820
|
623 |
+
[2024-12-30 06:31:29,453][00704] Num frames 1500...
|
624 |
+
[2024-12-30 06:31:29,571][00704] Num frames 1600...
|
625 |
+
[2024-12-30 06:31:29,692][00704] Num frames 1700...
|
626 |
+
[2024-12-30 06:31:29,809][00704] Num frames 1800...
|
627 |
+
[2024-12-30 06:31:29,934][00704] Num frames 1900...
|
628 |
+
[2024-12-30 06:31:30,060][00704] Num frames 2000...
|
629 |
+
[2024-12-30 06:31:30,182][00704] Avg episode rewards: #0: 22.790, true rewards: #0: 10.290
|
630 |
+
[2024-12-30 06:31:30,184][00704] Avg episode reward: 22.790, avg true_objective: 10.290
|
631 |
+
[2024-12-30 06:31:30,246][00704] Num frames 2100...
|
632 |
+
[2024-12-30 06:31:30,367][00704] Num frames 2200...
|
633 |
+
[2024-12-30 06:31:30,484][00704] Num frames 2300...
|
634 |
+
[2024-12-30 06:31:30,604][00704] Num frames 2400...
|
635 |
+
[2024-12-30 06:31:30,725][00704] Num frames 2500...
|
636 |
+
[2024-12-30 06:31:30,843][00704] Num frames 2600...
|
637 |
+
[2024-12-30 06:31:30,960][00704] Num frames 2700...
|
638 |
+
[2024-12-30 06:31:31,083][00704] Num frames 2800...
|
639 |
+
[2024-12-30 06:31:31,203][00704] Num frames 2900...
|
640 |
+
[2024-12-30 06:31:31,321][00704] Num frames 3000...
|
641 |
+
[2024-12-30 06:31:31,436][00704] Num frames 3100...
|
642 |
+
[2024-12-30 06:31:31,557][00704] Num frames 3200...
|
643 |
+
[2024-12-30 06:31:31,682][00704] Num frames 3300...
|
644 |
+
[2024-12-30 06:31:31,803][00704] Num frames 3400...
|
645 |
+
[2024-12-30 06:31:31,924][00704] Num frames 3500...
|
646 |
+
[2024-12-30 06:31:32,048][00704] Num frames 3600...
|
647 |
+
[2024-12-30 06:31:32,167][00704] Num frames 3700...
|
648 |
+
[2024-12-30 06:31:32,290][00704] Num frames 3800...
|
649 |
+
[2024-12-30 06:31:32,413][00704] Num frames 3900...
|
650 |
+
[2024-12-30 06:31:32,532][00704] Num frames 4000...
|
651 |
+
[2024-12-30 06:31:32,667][00704] Avg episode rewards: #0: 31.226, true rewards: #0: 13.560
|
652 |
+
[2024-12-30 06:31:32,668][00704] Avg episode reward: 31.226, avg true_objective: 13.560
|
653 |
+
[2024-12-30 06:31:32,709][00704] Num frames 4100...
|
654 |
+
[2024-12-30 06:31:32,824][00704] Num frames 4200...
|
655 |
+
[2024-12-30 06:31:32,940][00704] Num frames 4300...
|
656 |
+
[2024-12-30 06:31:33,059][00704] Num frames 4400...
|
657 |
+
[2024-12-30 06:31:33,177][00704] Num frames 4500...
|
658 |
+
[2024-12-30 06:31:33,299][00704] Num frames 4600...
|
659 |
+
[2024-12-30 06:31:33,417][00704] Num frames 4700...
|
660 |
+
[2024-12-30 06:31:33,538][00704] Num frames 4800...
|
661 |
+
[2024-12-30 06:31:33,657][00704] Num frames 4900...
|
662 |
+
[2024-12-30 06:31:33,782][00704] Num frames 5000...
|
663 |
+
[2024-12-30 06:31:33,901][00704] Num frames 5100...
|
664 |
+
[2024-12-30 06:31:34,060][00704] Avg episode rewards: #0: 28.970, true rewards: #0: 12.970
|
665 |
+
[2024-12-30 06:31:34,062][00704] Avg episode reward: 28.970, avg true_objective: 12.970
|
666 |
+
[2024-12-30 06:31:34,079][00704] Num frames 5200...
|
667 |
+
[2024-12-30 06:31:34,198][00704] Num frames 5300...
|
668 |
+
[2024-12-30 06:31:34,319][00704] Num frames 5400...
|
669 |
+
[2024-12-30 06:31:34,432][00704] Num frames 5500...
|
670 |
+
[2024-12-30 06:31:34,550][00704] Num frames 5600...
|
671 |
+
[2024-12-30 06:31:34,682][00704] Num frames 5700...
|
672 |
+
[2024-12-30 06:31:34,735][00704] Avg episode rewards: #0: 25.000, true rewards: #0: 11.400
|
673 |
+
[2024-12-30 06:31:34,737][00704] Avg episode reward: 25.000, avg true_objective: 11.400
|
674 |
+
[2024-12-30 06:31:34,853][00704] Num frames 5800...
|
675 |
+
[2024-12-30 06:31:34,972][00704] Num frames 5900...
|
676 |
+
[2024-12-30 06:31:35,092][00704] Num frames 6000...
|
677 |
+
[2024-12-30 06:31:35,210][00704] Num frames 6100...
|
678 |
+
[2024-12-30 06:31:35,329][00704] Num frames 6200...
|
679 |
+
[2024-12-30 06:31:35,445][00704] Num frames 6300...
|
680 |
+
[2024-12-30 06:31:35,560][00704] Num frames 6400...
|
681 |
+
[2024-12-30 06:31:35,680][00704] Num frames 6500...
|
682 |
+
[2024-12-30 06:31:35,772][00704] Avg episode rewards: #0: 23.387, true rewards: #0: 10.887
|
683 |
+
[2024-12-30 06:31:35,773][00704] Avg episode reward: 23.387, avg true_objective: 10.887
|
684 |
+
[2024-12-30 06:31:35,853][00704] Num frames 6600...
|
685 |
+
[2024-12-30 06:31:35,970][00704] Num frames 6700...
|
686 |
+
[2024-12-30 06:31:36,088][00704] Num frames 6800...
|
687 |
+
[2024-12-30 06:31:36,208][00704] Num frames 6900...
|
688 |
+
[2024-12-30 06:31:36,326][00704] Num frames 7000...
|
689 |
+
[2024-12-30 06:31:36,442][00704] Num frames 7100...
|
690 |
+
[2024-12-30 06:31:36,561][00704] Num frames 7200...
|
691 |
+
[2024-12-30 06:31:36,678][00704] Num frames 7300...
|
692 |
+
[2024-12-30 06:31:36,794][00704] Num frames 7400...
|
693 |
+
[2024-12-30 06:31:36,909][00704] Num frames 7500...
|
694 |
+
[2024-12-30 06:31:37,029][00704] Num frames 7600...
|
695 |
+
[2024-12-30 06:31:37,148][00704] Num frames 7700...
|
696 |
+
[2024-12-30 06:31:37,207][00704] Avg episode rewards: #0: 23.576, true rewards: #0: 11.004
|
697 |
+
[2024-12-30 06:31:37,209][00704] Avg episode reward: 23.576, avg true_objective: 11.004
|
698 |
+
[2024-12-30 06:31:37,323][00704] Num frames 7800...
|
699 |
+
[2024-12-30 06:31:37,439][00704] Num frames 7900...
|
700 |
+
[2024-12-30 06:31:37,552][00704] Num frames 8000...
|
701 |
+
[2024-12-30 06:31:37,666][00704] Num frames 8100...
|
702 |
+
[2024-12-30 06:31:37,778][00704] Num frames 8200...
|
703 |
+
[2024-12-30 06:31:37,895][00704] Num frames 8300...
|
704 |
+
[2024-12-30 06:31:37,964][00704] Avg episode rewards: #0: 21.764, true rewards: #0: 10.389
|
705 |
+
[2024-12-30 06:31:37,966][00704] Avg episode reward: 21.764, avg true_objective: 10.389
|
706 |
+
[2024-12-30 06:31:38,076][00704] Num frames 8400...
|
707 |
+
[2024-12-30 06:31:38,195][00704] Num frames 8500...
|
708 |
+
[2024-12-30 06:31:38,315][00704] Num frames 8600...
|
709 |
+
[2024-12-30 06:31:38,431][00704] Num frames 8700...
|
710 |
+
[2024-12-30 06:31:38,549][00704] Num frames 8800...
|
711 |
+
[2024-12-30 06:31:38,667][00704] Num frames 8900...
|
712 |
+
[2024-12-30 06:31:38,744][00704] Avg episode rewards: #0: 20.688, true rewards: #0: 9.910
|
713 |
+
[2024-12-30 06:31:38,745][00704] Avg episode reward: 20.688, avg true_objective: 9.910
|
714 |
+
[2024-12-30 06:31:38,843][00704] Num frames 9000...
|
715 |
+
[2024-12-30 06:31:38,959][00704] Num frames 9100...
|
716 |
+
[2024-12-30 06:31:39,081][00704] Num frames 9200...
|
717 |
+
[2024-12-30 06:31:39,198][00704] Num frames 9300...
|
718 |
+
[2024-12-30 06:31:39,335][00704] Avg episode rewards: #0: 19.167, true rewards: #0: 9.367
|
719 |
+
[2024-12-30 06:31:39,336][00704] Avg episode reward: 19.167, avg true_objective: 9.367
|
720 |
+
[2024-12-30 06:32:01,375][00704] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
|