amangoyal commited on
Commit
e3eca00
·
1 Parent(s): 710a97a

Upload PPO LunarLander-v2 agent steps to HF

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 272.34 +/- 16.43
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f71ec8040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f71ec80d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f71ec8160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f71ec81f0>", "_build": "<function ActorCriticPolicy._build at 0x7f9f71ec8280>", "forward": "<function ActorCriticPolicy.forward at 0x7f9f71ec8310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f71ec83a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9f71ec8430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f71ec84c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f71ec8550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f71ec85e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9f71ec14e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1622016, "_total_timesteps": 1615632, "_num_timesteps_at_start": 1605632, "seed": null, "action_noise": null, "start_time": 1670411178114825014, "learning_rate": 0.0003, "tensorboard_log": "logs/unit1", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VidW50dS9tYW1iYWZvcmdlL2VudnMvc2IzXzM4L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91YnVudHUvbWFtYmFmb3JnZS9lbnZzL3NiM18zOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.003951394872099501, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMuTYesYcckCUhpRSlIwBbJRL74wBdJRHQKYxGT2WY4R1fZQoaAZoCWgPQwhpGhTNAwxyQJSGlFKUaBVL5mgWR0CmMW8UuctodX2UKGgGaAloD0MI275H/fWtcUCUhpRSlGgVTSYBaBZHQKYx5TCtRvZ1fZQoaAZoCWgPQwgdIJijR0BxQJSGlFKUaBVNDQFoFkdApjIMnLJSznV9lChoBmgJaA9DCI8YPbcQRXBAlIaUUpRoFUv4aBZHQKYyxvrnkkt1fZQoaAZoCWgPQwg9SE+Rg5ByQJSGlFKUaBVNCQFoFkdApjLYw9JSSHV9lChoBmgJaA9DCOEKKNTTSW9AlIaUUpRoFUvhaBZHQKYy92GqPwN1fZQoaAZoCWgPQwiyLJj4I+VvQJSGlFKUaBVL52gWR0CmM0vugHu7dX2UKGgGaAloD0MISrTk8XQ7ckCUhpRSlGgVS/hoFkdApjRTl1bJOnV9lChoBmgJaA9DCKErEai+jnFAlIaUUpRoFU05AWgWR0CmNFTru6VddX2UKGgGaAloD0MI8S2sG+83cUCUhpRSlGgVTQcBaBZHQKY0uE7GNrF1fZQoaAZoCWgPQwi8eapDLjlwQJSGlFKUaBVL5WgWR0CmNRqZc9nsdX2UKGgGaAloD0MIKJ6zBQR5ckCUhpRSlGgVS+xoFkdApjU/PHDJl3V9lChoBmgJaA9DCJFFmnhH+3BAlIaUUpRoFU0jAWgWR0CmNaDgQ6IWdX2UKGgGaAloD0MISYRGsPEVckCUhpRSlGgVS/xoFkdApjXDWAf+0nV9lChoBmgJaA9DCLth26KMZ3JAlIaUUpRoFUvuaBZHQKY2FpxFRYR1fZQoaAZoCWgPQwgh5SfVPiNvQJSGlFKUaBVL8WgWR0CmNm2VNYbLdX2UKGgGaAloD0MIdonqrcHuckCUhpRSlGgVS+hoFkdApjaKq+8Gs3V9lChoBmgJaA9DCJXzxd5LmnFAlIaUUpRoFU0yAWgWR0CmNygPNFBqdX2UKGgGaAloD0MI/vDz30Nlc0CUhpRSlGgVS+ZoFkdApjc4phF3IXV9lChoBmgJaA9DCPCjGva7MHJAlIaUUpRoFUvxaBZHQKY3UOsDGLl1fZQoaAZoCWgPQwjAsPz59vJyQJSGlFKUaBVNIwFoFkdApjePRsuWbHV9lChoBmgJaA9DCDyFXKlnlnJAlIaUUpRoFU0NAWgWR0CmN7eyAxzrdX2UKGgGaAloD0MIO/w1WePBcUCUhpRSlGgVTQwBaBZHQKY4EPsAvL51fZQoaAZoCWgPQwg2sFWChTlwQJSGlFKUaBVL3mgWR0CmOHwmNR3vdX2UKGgGaAloD0MIyXVTyuu3cECUhpRSlGgVS9ZoFkdApjjhq20AtHV9lChoBmgJaA9DCOIi93R1sHJAlIaUUpRoFU0LAWgWR0CmOSi4z7/GdX2UKGgGaAloD0MIn3b4a/InckCUhpRSlGgVTQ4BaBZHQKY5Pm03OwB1fZQoaAZoCWgPQwhQGJRpNDRxQJSGlFKUaBVL92gWR0CmOY89wFTvdX2UKGgGaAloD0MIbhRZa6jXcECUhpRSlGgVTQQBaBZHQKY6mfg75mB1fZQoaAZoCWgPQwjEr1jDBYZwQJSGlFKUaBVL32gWR0CmOtrZi/fwdX2UKGgGaAloD0MIK76h8Fkwc0CUhpRSlGgVTRQBaBZHQKY7B3cHnlp1fZQoaAZoCWgPQwitMlNav55xQJSGlFKUaBVNBQFoFkdApjslVtGd7XV9lChoBmgJaA9DCGRZMPHHSHBAlIaUUpRoFUv0aBZHQKY7UCPIXCV1fZQoaAZoCWgPQwhKXp1jQJdzQJSGlFKUaBVL1mgWR0CmUzhEKE39dX2UKGgGaAloD0MImzv6Xy7Mb0CUhpRSlGgVS+ZoFkdAplM9ruYx+XV9lChoBmgJaA9DCKFHjJ5b/3FAlIaUUpRoFU0TAWgWR0CmVEuqebuudX2UKGgGaAloD0MIvFzEd+IdcUCUhpRSlGgVTRwBaBZHQKZUrQyhzvJ1fZQoaAZoCWgPQwj3Hi45btpxQJSGlFKUaBVL2mgWR0CmVNYTj/+9dX2UKGgGaAloD0MIILdfPlldc0CUhpRSlGgVTQQBaBZHQKZU2om5UcZ1fZQoaAZoCWgPQwjylUBK7MVRQJSGlFKUaBVL2GgWR0CmVT3wkPc0dX2UKGgGaAloD0MIUwPN5xyQcUCUhpRSlGgVTRYBaBZHQKZWKwY+B6N1fZQoaAZoCWgPQwgP7zmwnO5wQJSGlFKUaBVL4GgWR0CmVkg1WKdhdX2UKGgGaAloD0MItOidCjjXcUCUhpRSlGgVS/5oFkdAplbJ0bLlm3V9lChoBmgJaA9DCPTBMjb0Um9AlIaUUpRoFU0HAWgWR0CmVvI5o4+9dX2UKGgGaAloD0MIi8Iuit5ycECUhpRSlGgVS/toFkdAplhN1nuiOHV9lChoBmgJaA9DCHpQUIpW4HFAlIaUUpRoFUvxaBZHQKZYkEzO5ax1fZQoaAZoCWgPQwh4CU594LxxQJSGlFKUaBVL/2gWR0CmWauQ6p5vdX2UKGgGaAloD0MIsYhhh7EcckCUhpRSlGgVTQIBaBZHQKZaUXaakRB1fZQoaAZoCWgPQwgzw0ZZf2ZxQJSGlFKUaBVNDQFoFkdAplpRybQTmHV9lChoBmgJaA9DCPp+arw0Y3NAlIaUUpRoFUvhaBZHQKZaYY51eSl1fZQoaAZoCWgPQwgOvcXD+/5vQJSGlFKUaBVL7GgWR0CmWrNLDhtMdX2UKGgGaAloD0MInIpUGJt2c0CUhpRSlGgVS/FoFkdAplx0iD/VAnV9lChoBmgJaA9DCDTY1HnUQnJAlIaUUpRoFU0NAWgWR0CmXLwGGEf1dX2UKGgGaAloD0MI22lrRDDuckCUhpRSlGgVS+1oFkdAplzFaSs8xXV9lChoBmgJaA9DCFnfwORGmHBAlIaUUpRoFUv8aBZHQKZcy3ocJdB1fZQoaAZoCWgPQwi46GSptXBwQJSGlFKUaBVNCgFoFkdApl0N3dKujnV9lChoBmgJaA9DCFm+LsM/anJAlIaUUpRoFUv5aBZHQKZeQlEZzgd1fZQoaAZoCWgPQwiKWwUxUAVtQJSGlFKUaBVL/2gWR0CmXqTdcjZ+dX2UKGgGaAloD0MIjspN1BLnckCUhpRSlGgVS+hoFkdApl6vaL4ve3V9lChoBmgJaA9DCEz/klSmW3FAlIaUUpRoFU0BAWgWR0CmXwL56+nJdX2UKGgGaAloD0MIs9DOadZ1cUCUhpRSlGgVS+doFkdApl9l2LYPG3V9lChoBmgJaA9DCM5uLZPhp1BAlIaUUpRoFUupaBZHQKZfbsMy8Bd1fZQoaAZoCWgPQwjbNSGtMZVxQJSGlFKUaBVNAwFoFkdApmAG7+T/yXV9lChoBmgJaA9DCKRskbRbtnBAlIaUUpRoFUvtaBZHQKZgesYEW691fZQoaAZoCWgPQwh7iEZ3kLRyQJSGlFKUaBVL62gWR0CmYHoJAt4BdX2UKGgGaAloD0MI36P+esXxc0CUhpRSlGgVTQwBaBZHQKZgp0zTF2p1fZQoaAZoCWgPQwicGf1oOJxwQJSGlFKUaBVNBwFoFkdApmDrgTAWSHV9lChoBmgJaA9DCOvld5oMkHFAlIaUUpRoFUvbaBZHQKZiOXMyJsR1fZQoaAZoCWgPQwirItxkVKJyQJSGlFKUaBVL8WgWR0CmY7j1f3N+dX2UKGgGaAloD0MIgjgPJ7DBckCUhpRSlGgVS+hoFkdApmO5Fqi48XV9lChoBmgJaA9DCKfs9IO6mHFAlIaUUpRoFU0BAWgWR0CmZDK5CngpdX2UKGgGaAloD0MI9GxWfa4sc0CUhpRSlGgVTQsBaBZHQKZkiwu/UON1fZQoaAZoCWgPQwigpSvYxs9vQJSGlFKUaBVNAAFoFkdApmVyuOjqOnV9lChoBmgJaA9DCLQB2IAI5W9AlIaUUpRoFU0bAWgWR0CmZcR+rlvIdX2UKGgGaAloD0MIPe/GgkJBb0CUhpRSlGgVTRABaBZHQKZlySBbwBp1fZQoaAZoCWgPQwgSwTi4dHdyQJSGlFKUaBVL/mgWR0CmZc5RTCLudX2UKGgGaAloD0MIvJS6ZBwBbkCUhpRSlGgVS+1oFkdApmX11B+nZXV9lChoBmgJaA9DCLhYUYPpXnBAlIaUUpRoFU0GAWgWR0CmZlqjSG8FdX2UKGgGaAloD0MIVB1yM9wvcUCUhpRSlGgVS/ZoFkdApmaZFb3XZ3V9lChoBmgJaA9DCIV6+gj8W3JAlIaUUpRoFUv7aBZHQKZnPiOvMbF1fZQoaAZoCWgPQwi+9WG90bluQJSGlFKUaBVNEwFoFkdApmgM3ZPEbnV9lChoBmgJaA9DCOLoKt1dg25AlIaUUpRoFU0LAWgWR0CmaBl2/zredX2UKGgGaAloD0MIOgfPhKaUcECUhpRSlGgVTQUBaBZHQKZoaQcPvrp1fZQoaAZoCWgPQwioHJPFvZByQJSGlFKUaBVL8WgWR0CmaKrksBhhdX2UKGgGaAloD0MIdjQO9ftzckCUhpRSlGgVS+toFkdApmlU96kZaXV9lChoBmgJaA9DCJbrbTMVLXJAlIaUUpRoFUviaBZHQKZpwapgkTp1fZQoaAZoCWgPQwiWehaEsgBwQJSGlFKUaBVNBAFoFkdApmn+NgjQiXV9lChoBmgJaA9DCDf/rzqyK3BAlIaUUpRoFUv1aBZHQKZqCxxkupV1fZQoaAZoCWgPQwhNZVHYBRZyQJSGlFKUaBVL72gWR0Cma+d4VymzdX2UKGgGaAloD0MIOey+Y/gJcUCUhpRSlGgVS+5oFkdApmvoG8mKInV9lChoBmgJaA9DCAKDpE9rV3NAlIaUUpRoFUvvaBZHQKZr8R2bG3p1fZQoaAZoCWgPQwi7fOvD+qpyQJSGlFKUaBVNFAFoFkdApmxYHzH0b3V9lChoBmgJaA9DCNBHGXGBRXBAlIaUUpRoFUviaBZHQKZshJZntfJ1fZQoaAZoCWgPQwhLk1LQbQVxQJSGlFKUaBVNDgFoFkdApm0bHdXT3XV9lChoBmgJaA9DCML6P4c513FAlIaUUpRoFUvsaBZHQKZtUy4Wk8B1fZQoaAZoCWgPQwiny2JiszhyQJSGlFKUaBVL/2gWR0CmbsfW1+iKdX2UKGgGaAloD0MISUikbTxccECUhpRSlGgVS+1oFkdApm8CbF0gbXV9lChoBmgJaA9DCFAYlGn013FAlIaUUpRoFUv7aBZHQKZvi/47A+J1fZQoaAZoCWgPQwiKARJNIAduQJSGlFKUaBVL8mgWR0Cmb5VQhwERdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 396, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VidW50dS9tYW1iYWZvcmdlL2VudnMvc2IzXzM4L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91YnVudHUvbWFtYmFmb3JnZS9lbnZzL3NiM18zOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99b0617237afb6a0f214bc0894da685c020c0cf1013f41c4f34fc89952ec15b7
3
+ size 146495
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f71ec8040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f71ec80d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f71ec8160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f71ec81f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9f71ec8280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9f71ec8310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f71ec83a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9f71ec8430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f71ec84c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f71ec8550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f71ec85e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9f71ec14e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1622016,
46
+ "_total_timesteps": 1615632,
47
+ "_num_timesteps_at_start": 1605632,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670411178114825014,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": "logs/unit1",
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VidW50dS9tYW1iYWZvcmdlL2VudnMvc2IzXzM4L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91YnVudHUvbWFtYmFmb3JnZS9lbnZzL3NiM18zOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.003951394872099501,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVRRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMuTYesYcckCUhpRSlIwBbJRL74wBdJRHQKYxGT2WY4R1fZQoaAZoCWgPQwhpGhTNAwxyQJSGlFKUaBVL5mgWR0CmMW8UuctodX2UKGgGaAloD0MI275H/fWtcUCUhpRSlGgVTSYBaBZHQKYx5TCtRvZ1fZQoaAZoCWgPQwgdIJijR0BxQJSGlFKUaBVNDQFoFkdApjIMnLJSznV9lChoBmgJaA9DCI8YPbcQRXBAlIaUUpRoFUv4aBZHQKYyxvrnkkt1fZQoaAZoCWgPQwg9SE+Rg5ByQJSGlFKUaBVNCQFoFkdApjLYw9JSSHV9lChoBmgJaA9DCOEKKNTTSW9AlIaUUpRoFUvhaBZHQKYy92GqPwN1fZQoaAZoCWgPQwiyLJj4I+VvQJSGlFKUaBVL52gWR0CmM0vugHu7dX2UKGgGaAloD0MISrTk8XQ7ckCUhpRSlGgVS/hoFkdApjRTl1bJOnV9lChoBmgJaA9DCKErEai+jnFAlIaUUpRoFU05AWgWR0CmNFTru6VddX2UKGgGaAloD0MI8S2sG+83cUCUhpRSlGgVTQcBaBZHQKY0uE7GNrF1fZQoaAZoCWgPQwi8eapDLjlwQJSGlFKUaBVL5WgWR0CmNRqZc9nsdX2UKGgGaAloD0MIKJ6zBQR5ckCUhpRSlGgVS+xoFkdApjU/PHDJl3V9lChoBmgJaA9DCJFFmnhH+3BAlIaUUpRoFU0jAWgWR0CmNaDgQ6IWdX2UKGgGaAloD0MISYRGsPEVckCUhpRSlGgVS/xoFkdApjXDWAf+0nV9lChoBmgJaA9DCLth26KMZ3JAlIaUUpRoFUvuaBZHQKY2FpxFRYR1fZQoaAZoCWgPQwgh5SfVPiNvQJSGlFKUaBVL8WgWR0CmNm2VNYbLdX2UKGgGaAloD0MIdonqrcHuckCUhpRSlGgVS+hoFkdApjaKq+8Gs3V9lChoBmgJaA9DCJXzxd5LmnFAlIaUUpRoFU0yAWgWR0CmNygPNFBqdX2UKGgGaAloD0MI/vDz30Nlc0CUhpRSlGgVS+ZoFkdApjc4phF3IXV9lChoBmgJaA9DCPCjGva7MHJAlIaUUpRoFUvxaBZHQKY3UOsDGLl1fZQoaAZoCWgPQwjAsPz59vJyQJSGlFKUaBVNIwFoFkdApjePRsuWbHV9lChoBmgJaA9DCDyFXKlnlnJAlIaUUpRoFU0NAWgWR0CmN7eyAxzrdX2UKGgGaAloD0MIO/w1WePBcUCUhpRSlGgVTQwBaBZHQKY4EPsAvL51fZQoaAZoCWgPQwg2sFWChTlwQJSGlFKUaBVL3mgWR0CmOHwmNR3vdX2UKGgGaAloD0MIyXVTyuu3cECUhpRSlGgVS9ZoFkdApjjhq20AtHV9lChoBmgJaA9DCOIi93R1sHJAlIaUUpRoFU0LAWgWR0CmOSi4z7/GdX2UKGgGaAloD0MIn3b4a/InckCUhpRSlGgVTQ4BaBZHQKY5Pm03OwB1fZQoaAZoCWgPQwhQGJRpNDRxQJSGlFKUaBVL92gWR0CmOY89wFTvdX2UKGgGaAloD0MIbhRZa6jXcECUhpRSlGgVTQQBaBZHQKY6mfg75mB1fZQoaAZoCWgPQwjEr1jDBYZwQJSGlFKUaBVL32gWR0CmOtrZi/fwdX2UKGgGaAloD0MIK76h8Fkwc0CUhpRSlGgVTRQBaBZHQKY7B3cHnlp1fZQoaAZoCWgPQwitMlNav55xQJSGlFKUaBVNBQFoFkdApjslVtGd7XV9lChoBmgJaA9DCGRZMPHHSHBAlIaUUpRoFUv0aBZHQKY7UCPIXCV1fZQoaAZoCWgPQwhKXp1jQJdzQJSGlFKUaBVL1mgWR0CmUzhEKE39dX2UKGgGaAloD0MImzv6Xy7Mb0CUhpRSlGgVS+ZoFkdAplM9ruYx+XV9lChoBmgJaA9DCKFHjJ5b/3FAlIaUUpRoFU0TAWgWR0CmVEuqebuudX2UKGgGaAloD0MIvFzEd+IdcUCUhpRSlGgVTRwBaBZHQKZUrQyhzvJ1fZQoaAZoCWgPQwj3Hi45btpxQJSGlFKUaBVL2mgWR0CmVNYTj/+9dX2UKGgGaAloD0MIILdfPlldc0CUhpRSlGgVTQQBaBZHQKZU2om5UcZ1fZQoaAZoCWgPQwjylUBK7MVRQJSGlFKUaBVL2GgWR0CmVT3wkPc0dX2UKGgGaAloD0MIUwPN5xyQcUCUhpRSlGgVTRYBaBZHQKZWKwY+B6N1fZQoaAZoCWgPQwgP7zmwnO5wQJSGlFKUaBVL4GgWR0CmVkg1WKdhdX2UKGgGaAloD0MItOidCjjXcUCUhpRSlGgVS/5oFkdAplbJ0bLlm3V9lChoBmgJaA9DCPTBMjb0Um9AlIaUUpRoFU0HAWgWR0CmVvI5o4+9dX2UKGgGaAloD0MIi8Iuit5ycECUhpRSlGgVS/toFkdAplhN1nuiOHV9lChoBmgJaA9DCHpQUIpW4HFAlIaUUpRoFUvxaBZHQKZYkEzO5ax1fZQoaAZoCWgPQwh4CU594LxxQJSGlFKUaBVL/2gWR0CmWauQ6p5vdX2UKGgGaAloD0MIsYhhh7EcckCUhpRSlGgVTQIBaBZHQKZaUXaakRB1fZQoaAZoCWgPQwgzw0ZZf2ZxQJSGlFKUaBVNDQFoFkdAplpRybQTmHV9lChoBmgJaA9DCPp+arw0Y3NAlIaUUpRoFUvhaBZHQKZaYY51eSl1fZQoaAZoCWgPQwgOvcXD+/5vQJSGlFKUaBVL7GgWR0CmWrNLDhtMdX2UKGgGaAloD0MInIpUGJt2c0CUhpRSlGgVS/FoFkdAplx0iD/VAnV9lChoBmgJaA9DCDTY1HnUQnJAlIaUUpRoFU0NAWgWR0CmXLwGGEf1dX2UKGgGaAloD0MI22lrRDDuckCUhpRSlGgVS+1oFkdAplzFaSs8xXV9lChoBmgJaA9DCFnfwORGmHBAlIaUUpRoFUv8aBZHQKZcy3ocJdB1fZQoaAZoCWgPQwi46GSptXBwQJSGlFKUaBVNCgFoFkdApl0N3dKujnV9lChoBmgJaA9DCFm+LsM/anJAlIaUUpRoFUv5aBZHQKZeQlEZzgd1fZQoaAZoCWgPQwiKWwUxUAVtQJSGlFKUaBVL/2gWR0CmXqTdcjZ+dX2UKGgGaAloD0MIjspN1BLnckCUhpRSlGgVS+hoFkdApl6vaL4ve3V9lChoBmgJaA9DCEz/klSmW3FAlIaUUpRoFU0BAWgWR0CmXwL56+nJdX2UKGgGaAloD0MIs9DOadZ1cUCUhpRSlGgVS+doFkdApl9l2LYPG3V9lChoBmgJaA9DCM5uLZPhp1BAlIaUUpRoFUupaBZHQKZfbsMy8Bd1fZQoaAZoCWgPQwjbNSGtMZVxQJSGlFKUaBVNAwFoFkdApmAG7+T/yXV9lChoBmgJaA9DCKRskbRbtnBAlIaUUpRoFUvtaBZHQKZgesYEW691fZQoaAZoCWgPQwh7iEZ3kLRyQJSGlFKUaBVL62gWR0CmYHoJAt4BdX2UKGgGaAloD0MI36P+esXxc0CUhpRSlGgVTQwBaBZHQKZgp0zTF2p1fZQoaAZoCWgPQwicGf1oOJxwQJSGlFKUaBVNBwFoFkdApmDrgTAWSHV9lChoBmgJaA9DCOvld5oMkHFAlIaUUpRoFUvbaBZHQKZiOXMyJsR1fZQoaAZoCWgPQwirItxkVKJyQJSGlFKUaBVL8WgWR0CmY7j1f3N+dX2UKGgGaAloD0MIgjgPJ7DBckCUhpRSlGgVS+hoFkdApmO5Fqi48XV9lChoBmgJaA9DCKfs9IO6mHFAlIaUUpRoFU0BAWgWR0CmZDK5CngpdX2UKGgGaAloD0MI9GxWfa4sc0CUhpRSlGgVTQsBaBZHQKZkiwu/UON1fZQoaAZoCWgPQwigpSvYxs9vQJSGlFKUaBVNAAFoFkdApmVyuOjqOnV9lChoBmgJaA9DCLQB2IAI5W9AlIaUUpRoFU0bAWgWR0CmZcR+rlvIdX2UKGgGaAloD0MIPe/GgkJBb0CUhpRSlGgVTRABaBZHQKZlySBbwBp1fZQoaAZoCWgPQwgSwTi4dHdyQJSGlFKUaBVL/mgWR0CmZc5RTCLudX2UKGgGaAloD0MIvJS6ZBwBbkCUhpRSlGgVS+1oFkdApmX11B+nZXV9lChoBmgJaA9DCLhYUYPpXnBAlIaUUpRoFU0GAWgWR0CmZlqjSG8FdX2UKGgGaAloD0MIVB1yM9wvcUCUhpRSlGgVS/ZoFkdApmaZFb3XZ3V9lChoBmgJaA9DCIV6+gj8W3JAlIaUUpRoFUv7aBZHQKZnPiOvMbF1fZQoaAZoCWgPQwi+9WG90bluQJSGlFKUaBVNEwFoFkdApmgM3ZPEbnV9lChoBmgJaA9DCOLoKt1dg25AlIaUUpRoFU0LAWgWR0CmaBl2/zredX2UKGgGaAloD0MIOgfPhKaUcECUhpRSlGgVTQUBaBZHQKZoaQcPvrp1fZQoaAZoCWgPQwioHJPFvZByQJSGlFKUaBVL8WgWR0CmaKrksBhhdX2UKGgGaAloD0MIdjQO9ftzckCUhpRSlGgVS+toFkdApmlU96kZaXV9lChoBmgJaA9DCJbrbTMVLXJAlIaUUpRoFUviaBZHQKZpwapgkTp1fZQoaAZoCWgPQwiWehaEsgBwQJSGlFKUaBVNBAFoFkdApmn+NgjQiXV9lChoBmgJaA9DCDf/rzqyK3BAlIaUUpRoFUv1aBZHQKZqCxxkupV1fZQoaAZoCWgPQwhNZVHYBRZyQJSGlFKUaBVL72gWR0Cma+d4VymzdX2UKGgGaAloD0MIOey+Y/gJcUCUhpRSlGgVS+5oFkdApmvoG8mKInV9lChoBmgJaA9DCAKDpE9rV3NAlIaUUpRoFUvvaBZHQKZr8R2bG3p1fZQoaAZoCWgPQwi7fOvD+qpyQJSGlFKUaBVNFAFoFkdApmxYHzH0b3V9lChoBmgJaA9DCNBHGXGBRXBAlIaUUpRoFUviaBZHQKZshJZntfJ1fZQoaAZoCWgPQwhLk1LQbQVxQJSGlFKUaBVNDgFoFkdApm0bHdXT3XV9lChoBmgJaA9DCML6P4c513FAlIaUUpRoFUvsaBZHQKZtUy4Wk8B1fZQoaAZoCWgPQwiny2JiszhyQJSGlFKUaBVL/2gWR0CmbsfW1+iKdX2UKGgGaAloD0MISUikbTxccECUhpRSlGgVS+1oFkdApm8CbF0gbXV9lChoBmgJaA9DCFAYlGn013FAlIaUUpRoFUv7aBZHQKZvi/47A+J1fZQoaAZoCWgPQwiKARJNIAduQJSGlFKUaBVL8mgWR0Cmb5VQhwERdWUu"
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 396,
76
+ "n_steps": 1024,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 0.98,
79
+ "ent_coef": 0.01,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VidW50dS9tYW1iYWZvcmdlL2VudnMvc2IzXzM4L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91YnVudHUvbWFtYmFmb3JnZS9lbnZzL3NiM18zOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d51a1b65105ff5aaa09e39089128304fc068a8d4817bc89dcdfb2dca783adcf0
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50a0047f7ed490efcdd3fd73a9296cdf54ea2ae3a7092971251c458b31c6da86
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Wed Mar 2 00:30:59 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0
5
+ GPU Enabled: True
6
+ Numpy: 1.23.5
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (207 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.34384246114763, "std_reward": 16.432753383772763, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T17:31:04.636432"}