Upload PPO LunarLander-v2 agent steps to HF
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +91 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.34 +/- 16.43
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f71ec8040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f71ec80d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f71ec8160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f71ec81f0>", "_build": "<function ActorCriticPolicy._build at 0x7f9f71ec8280>", "forward": "<function ActorCriticPolicy.forward at 0x7f9f71ec8310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f71ec83a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9f71ec8430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f71ec84c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f71ec8550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f71ec85e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9f71ec14e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1622016, "_total_timesteps": 1615632, "_num_timesteps_at_start": 1605632, "seed": null, "action_noise": null, "start_time": 1670411178114825014, "learning_rate": 0.0003, "tensorboard_log": "logs/unit1", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VidW50dS9tYW1iYWZvcmdlL2VudnMvc2IzXzM4L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91YnVudHUvbWFtYmFmb3JnZS9lbnZzL3NiM18zOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.003951394872099501, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMuTYesYcckCUhpRSlIwBbJRL74wBdJRHQKYxGT2WY4R1fZQoaAZoCWgPQwhpGhTNAwxyQJSGlFKUaBVL5mgWR0CmMW8UuctodX2UKGgGaAloD0MI275H/fWtcUCUhpRSlGgVTSYBaBZHQKYx5TCtRvZ1fZQoaAZoCWgPQwgdIJijR0BxQJSGlFKUaBVNDQFoFkdApjIMnLJSznV9lChoBmgJaA9DCI8YPbcQRXBAlIaUUpRoFUv4aBZHQKYyxvrnkkt1fZQoaAZoCWgPQwg9SE+Rg5ByQJSGlFKUaBVNCQFoFkdApjLYw9JSSHV9lChoBmgJaA9DCOEKKNTTSW9AlIaUUpRoFUvhaBZHQKYy92GqPwN1fZQoaAZoCWgPQwiyLJj4I+VvQJSGlFKUaBVL52gWR0CmM0vugHu7dX2UKGgGaAloD0MISrTk8XQ7ckCUhpRSlGgVS/hoFkdApjRTl1bJOnV9lChoBmgJaA9DCKErEai+jnFAlIaUUpRoFU05AWgWR0CmNFTru6VddX2UKGgGaAloD0MI8S2sG+83cUCUhpRSlGgVTQcBaBZHQKY0uE7GNrF1fZQoaAZoCWgPQwi8eapDLjlwQJSGlFKUaBVL5WgWR0CmNRqZc9nsdX2UKGgGaAloD0MIKJ6zBQR5ckCUhpRSlGgVS+xoFkdApjU/PHDJl3V9lChoBmgJaA9DCJFFmnhH+3BAlIaUUpRoFU0jAWgWR0CmNaDgQ6IWdX2UKGgGaAloD0MISYRGsPEVckCUhpRSlGgVS/xoFkdApjXDWAf+0nV9lChoBmgJaA9DCLth26KMZ3JAlIaUUpRoFUvuaBZHQKY2FpxFRYR1fZQoaAZoCWgPQwgh5SfVPiNvQJSGlFKUaBVL8WgWR0CmNm2VNYbLdX2UKGgGaAloD0MIdonqrcHuckCUhpRSlGgVS+hoFkdApjaKq+8Gs3V9lChoBmgJaA9DCJXzxd5LmnFAlIaUUpRoFU0yAWgWR0CmNygPNFBqdX2UKGgGaAloD0MI/vDz30Nlc0CUhpRSlGgVS+ZoFkdApjc4phF3IXV9lChoBmgJaA9DCPCjGva7MHJAlIaUUpRoFUvxaBZHQKY3UOsDGLl1fZQoaAZoCWgPQwjAsPz59vJyQJSGlFKUaBVNIwFoFkdApjePRsuWbHV9lChoBmgJaA9DCDyFXKlnlnJAlIaUUpRoFU0NAWgWR0CmN7eyAxzrdX2UKGgGaAloD0MIO/w1WePBcUCUhpRSlGgVTQwBaBZHQKY4EPsAvL51fZQoaAZoCWgPQwg2sFWChTlwQJSGlFKUaBVL3mgWR0CmOHwmNR3vdX2UKGgGaAloD0MIyXVTyuu3cECUhpRSlGgVS9ZoFkdApjjhq20AtHV9lChoBmgJaA9DCOIi93R1sHJAlIaUUpRoFU0LAWgWR0CmOSi4z7/GdX2UKGgGaAloD0MIn3b4a/InckCUhpRSlGgVTQ4BaBZHQKY5Pm03OwB1fZQoaAZoCWgPQwhQGJRpNDRxQJSGlFKUaBVL92gWR0CmOY89wFTvdX2UKGgGaAloD0MIbhRZa6jXcECUhpRSlGgVTQQBaBZHQKY6mfg75mB1fZQoaAZoCWgPQwjEr1jDBYZwQJSGlFKUaBVL32gWR0CmOtrZi/fwdX2UKGgGaAloD0MIK76h8Fkwc0CUhpRSlGgVTRQBaBZHQKY7B3cHnlp1fZQoaAZoCWgPQwitMlNav55xQJSGlFKUaBVNBQFoFkdApjslVtGd7XV9lChoBmgJaA9DCGRZMPHHSHBAlIaUUpRoFUv0aBZHQKY7UCPIXCV1fZQoaAZoCWgPQwhKXp1jQJdzQJSGlFKUaBVL1mgWR0CmUzhEKE39dX2UKGgGaAloD0MImzv6Xy7Mb0CUhpRSlGgVS+ZoFkdAplM9ruYx+XV9lChoBmgJaA9DCKFHjJ5b/3FAlIaUUpRoFU0TAWgWR0CmVEuqebuudX2UKGgGaAloD0MIvFzEd+IdcUCUhpRSlGgVTRwBaBZHQKZUrQyhzvJ1fZQoaAZoCWgPQwj3Hi45btpxQJSGlFKUaBVL2mgWR0CmVNYTj/+9dX2UKGgGaAloD0MIILdfPlldc0CUhpRSlGgVTQQBaBZHQKZU2om5UcZ1fZQoaAZoCWgPQwjylUBK7MVRQJSGlFKUaBVL2GgWR0CmVT3wkPc0dX2UKGgGaAloD0MIUwPN5xyQcUCUhpRSlGgVTRYBaBZHQKZWKwY+B6N1fZQoaAZoCWgPQwgP7zmwnO5wQJSGlFKUaBVL4GgWR0CmVkg1WKdhdX2UKGgGaAloD0MItOidCjjXcUCUhpRSlGgVS/5oFkdAplbJ0bLlm3V9lChoBmgJaA9DCPTBMjb0Um9AlIaUUpRoFU0HAWgWR0CmVvI5o4+9dX2UKGgGaAloD0MIi8Iuit5ycECUhpRSlGgVS/toFkdAplhN1nuiOHV9lChoBmgJaA9DCHpQUIpW4HFAlIaUUpRoFUvxaBZHQKZYkEzO5ax1fZQoaAZoCWgPQwh4CU594LxxQJSGlFKUaBVL/2gWR0CmWauQ6p5vdX2UKGgGaAloD0MIsYhhh7EcckCUhpRSlGgVTQIBaBZHQKZaUXaakRB1fZQoaAZoCWgPQwgzw0ZZf2ZxQJSGlFKUaBVNDQFoFkdAplpRybQTmHV9lChoBmgJaA9DCPp+arw0Y3NAlIaUUpRoFUvhaBZHQKZaYY51eSl1fZQoaAZoCWgPQwgOvcXD+/5vQJSGlFKUaBVL7GgWR0CmWrNLDhtMdX2UKGgGaAloD0MInIpUGJt2c0CUhpRSlGgVS/FoFkdAplx0iD/VAnV9lChoBmgJaA9DCDTY1HnUQnJAlIaUUpRoFU0NAWgWR0CmXLwGGEf1dX2UKGgGaAloD0MI22lrRDDuckCUhpRSlGgVS+1oFkdAplzFaSs8xXV9lChoBmgJaA9DCFnfwORGmHBAlIaUUpRoFUv8aBZHQKZcy3ocJdB1fZQoaAZoCWgPQwi46GSptXBwQJSGlFKUaBVNCgFoFkdApl0N3dKujnV9lChoBmgJaA9DCFm+LsM/anJAlIaUUpRoFUv5aBZHQKZeQlEZzgd1fZQoaAZoCWgPQwiKWwUxUAVtQJSGlFKUaBVL/2gWR0CmXqTdcjZ+dX2UKGgGaAloD0MIjspN1BLnckCUhpRSlGgVS+hoFkdApl6vaL4ve3V9lChoBmgJaA9DCEz/klSmW3FAlIaUUpRoFU0BAWgWR0CmXwL56+nJdX2UKGgGaAloD0MIs9DOadZ1cUCUhpRSlGgVS+doFkdApl9l2LYPG3V9lChoBmgJaA9DCM5uLZPhp1BAlIaUUpRoFUupaBZHQKZfbsMy8Bd1fZQoaAZoCWgPQwjbNSGtMZVxQJSGlFKUaBVNAwFoFkdApmAG7+T/yXV9lChoBmgJaA9DCKRskbRbtnBAlIaUUpRoFUvtaBZHQKZgesYEW691fZQoaAZoCWgPQwh7iEZ3kLRyQJSGlFKUaBVL62gWR0CmYHoJAt4BdX2UKGgGaAloD0MI36P+esXxc0CUhpRSlGgVTQwBaBZHQKZgp0zTF2p1fZQoaAZoCWgPQwicGf1oOJxwQJSGlFKUaBVNBwFoFkdApmDrgTAWSHV9lChoBmgJaA9DCOvld5oMkHFAlIaUUpRoFUvbaBZHQKZiOXMyJsR1fZQoaAZoCWgPQwirItxkVKJyQJSGlFKUaBVL8WgWR0CmY7j1f3N+dX2UKGgGaAloD0MIgjgPJ7DBckCUhpRSlGgVS+hoFkdApmO5Fqi48XV9lChoBmgJaA9DCKfs9IO6mHFAlIaUUpRoFU0BAWgWR0CmZDK5CngpdX2UKGgGaAloD0MI9GxWfa4sc0CUhpRSlGgVTQsBaBZHQKZkiwu/UON1fZQoaAZoCWgPQwigpSvYxs9vQJSGlFKUaBVNAAFoFkdApmVyuOjqOnV9lChoBmgJaA9DCLQB2IAI5W9AlIaUUpRoFU0bAWgWR0CmZcR+rlvIdX2UKGgGaAloD0MIPe/GgkJBb0CUhpRSlGgVTRABaBZHQKZlySBbwBp1fZQoaAZoCWgPQwgSwTi4dHdyQJSGlFKUaBVL/mgWR0CmZc5RTCLudX2UKGgGaAloD0MIvJS6ZBwBbkCUhpRSlGgVS+1oFkdApmX11B+nZXV9lChoBmgJaA9DCLhYUYPpXnBAlIaUUpRoFU0GAWgWR0CmZlqjSG8FdX2UKGgGaAloD0MIVB1yM9wvcUCUhpRSlGgVS/ZoFkdApmaZFb3XZ3V9lChoBmgJaA9DCIV6+gj8W3JAlIaUUpRoFUv7aBZHQKZnPiOvMbF1fZQoaAZoCWgPQwi+9WG90bluQJSGlFKUaBVNEwFoFkdApmgM3ZPEbnV9lChoBmgJaA9DCOLoKt1dg25AlIaUUpRoFU0LAWgWR0CmaBl2/zredX2UKGgGaAloD0MIOgfPhKaUcECUhpRSlGgVTQUBaBZHQKZoaQcPvrp1fZQoaAZoCWgPQwioHJPFvZByQJSGlFKUaBVL8WgWR0CmaKrksBhhdX2UKGgGaAloD0MIdjQO9ftzckCUhpRSlGgVS+toFkdApmlU96kZaXV9lChoBmgJaA9DCJbrbTMVLXJAlIaUUpRoFUviaBZHQKZpwapgkTp1fZQoaAZoCWgPQwiWehaEsgBwQJSGlFKUaBVNBAFoFkdApmn+NgjQiXV9lChoBmgJaA9DCDf/rzqyK3BAlIaUUpRoFUv1aBZHQKZqCxxkupV1fZQoaAZoCWgPQwhNZVHYBRZyQJSGlFKUaBVL72gWR0Cma+d4VymzdX2UKGgGaAloD0MIOey+Y/gJcUCUhpRSlGgVS+5oFkdApmvoG8mKInV9lChoBmgJaA9DCAKDpE9rV3NAlIaUUpRoFUvvaBZHQKZr8R2bG3p1fZQoaAZoCWgPQwi7fOvD+qpyQJSGlFKUaBVNFAFoFkdApmxYHzH0b3V9lChoBmgJaA9DCNBHGXGBRXBAlIaUUpRoFUviaBZHQKZshJZntfJ1fZQoaAZoCWgPQwhLk1LQbQVxQJSGlFKUaBVNDgFoFkdApm0bHdXT3XV9lChoBmgJaA9DCML6P4c513FAlIaUUpRoFUvsaBZHQKZtUy4Wk8B1fZQoaAZoCWgPQwiny2JiszhyQJSGlFKUaBVL/2gWR0CmbsfW1+iKdX2UKGgGaAloD0MISUikbTxccECUhpRSlGgVS+1oFkdApm8CbF0gbXV9lChoBmgJaA9DCFAYlGn013FAlIaUUpRoFUv7aBZHQKZvi/47A+J1fZQoaAZoCWgPQwiKARJNIAduQJSGlFKUaBVL8mgWR0Cmb5VQhwERdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 396, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VidW50dS9tYW1iYWZvcmdlL2VudnMvc2IzXzM4L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91YnVudHUvbWFtYmFmb3JnZS9lbnZzL3NiM18zOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99b0617237afb6a0f214bc0894da685c020c0cf1013f41c4f34fc89952ec15b7
|
3 |
+
size 146495
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f71ec8040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f71ec80d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f71ec8160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f71ec81f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9f71ec8280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9f71ec8310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f71ec83a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9f71ec8430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f71ec84c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f71ec8550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f71ec85e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9f71ec14e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1622016,
|
46 |
+
"_total_timesteps": 1615632,
|
47 |
+
"_num_timesteps_at_start": 1605632,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670411178114825014,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "logs/unit1",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VidW50dS9tYW1iYWZvcmdlL2VudnMvc2IzXzM4L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91YnVudHUvbWFtYmFmb3JnZS9lbnZzL3NiM18zOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": null,
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.003951394872099501,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVRRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMuTYesYcckCUhpRSlIwBbJRL74wBdJRHQKYxGT2WY4R1fZQoaAZoCWgPQwhpGhTNAwxyQJSGlFKUaBVL5mgWR0CmMW8UuctodX2UKGgGaAloD0MI275H/fWtcUCUhpRSlGgVTSYBaBZHQKYx5TCtRvZ1fZQoaAZoCWgPQwgdIJijR0BxQJSGlFKUaBVNDQFoFkdApjIMnLJSznV9lChoBmgJaA9DCI8YPbcQRXBAlIaUUpRoFUv4aBZHQKYyxvrnkkt1fZQoaAZoCWgPQwg9SE+Rg5ByQJSGlFKUaBVNCQFoFkdApjLYw9JSSHV9lChoBmgJaA9DCOEKKNTTSW9AlIaUUpRoFUvhaBZHQKYy92GqPwN1fZQoaAZoCWgPQwiyLJj4I+VvQJSGlFKUaBVL52gWR0CmM0vugHu7dX2UKGgGaAloD0MISrTk8XQ7ckCUhpRSlGgVS/hoFkdApjRTl1bJOnV9lChoBmgJaA9DCKErEai+jnFAlIaUUpRoFU05AWgWR0CmNFTru6VddX2UKGgGaAloD0MI8S2sG+83cUCUhpRSlGgVTQcBaBZHQKY0uE7GNrF1fZQoaAZoCWgPQwi8eapDLjlwQJSGlFKUaBVL5WgWR0CmNRqZc9nsdX2UKGgGaAloD0MIKJ6zBQR5ckCUhpRSlGgVS+xoFkdApjU/PHDJl3V9lChoBmgJaA9DCJFFmnhH+3BAlIaUUpRoFU0jAWgWR0CmNaDgQ6IWdX2UKGgGaAloD0MISYRGsPEVckCUhpRSlGgVS/xoFkdApjXDWAf+0nV9lChoBmgJaA9DCLth26KMZ3JAlIaUUpRoFUvuaBZHQKY2FpxFRYR1fZQoaAZoCWgPQwgh5SfVPiNvQJSGlFKUaBVL8WgWR0CmNm2VNYbLdX2UKGgGaAloD0MIdonqrcHuckCUhpRSlGgVS+hoFkdApjaKq+8Gs3V9lChoBmgJaA9DCJXzxd5LmnFAlIaUUpRoFU0yAWgWR0CmNygPNFBqdX2UKGgGaAloD0MI/vDz30Nlc0CUhpRSlGgVS+ZoFkdApjc4phF3IXV9lChoBmgJaA9DCPCjGva7MHJAlIaUUpRoFUvxaBZHQKY3UOsDGLl1fZQoaAZoCWgPQwjAsPz59vJyQJSGlFKUaBVNIwFoFkdApjePRsuWbHV9lChoBmgJaA9DCDyFXKlnlnJAlIaUUpRoFU0NAWgWR0CmN7eyAxzrdX2UKGgGaAloD0MIO/w1WePBcUCUhpRSlGgVTQwBaBZHQKY4EPsAvL51fZQoaAZoCWgPQwg2sFWChTlwQJSGlFKUaBVL3mgWR0CmOHwmNR3vdX2UKGgGaAloD0MIyXVTyuu3cECUhpRSlGgVS9ZoFkdApjjhq20AtHV9lChoBmgJaA9DCOIi93R1sHJAlIaUUpRoFU0LAWgWR0CmOSi4z7/GdX2UKGgGaAloD0MIn3b4a/InckCUhpRSlGgVTQ4BaBZHQKY5Pm03OwB1fZQoaAZoCWgPQwhQGJRpNDRxQJSGlFKUaBVL92gWR0CmOY89wFTvdX2UKGgGaAloD0MIbhRZa6jXcECUhpRSlGgVTQQBaBZHQKY6mfg75mB1fZQoaAZoCWgPQwjEr1jDBYZwQJSGlFKUaBVL32gWR0CmOtrZi/fwdX2UKGgGaAloD0MIK76h8Fkwc0CUhpRSlGgVTRQBaBZHQKY7B3cHnlp1fZQoaAZoCWgPQwitMlNav55xQJSGlFKUaBVNBQFoFkdApjslVtGd7XV9lChoBmgJaA9DCGRZMPHHSHBAlIaUUpRoFUv0aBZHQKY7UCPIXCV1fZQoaAZoCWgPQwhKXp1jQJdzQJSGlFKUaBVL1mgWR0CmUzhEKE39dX2UKGgGaAloD0MImzv6Xy7Mb0CUhpRSlGgVS+ZoFkdAplM9ruYx+XV9lChoBmgJaA9DCKFHjJ5b/3FAlIaUUpRoFU0TAWgWR0CmVEuqebuudX2UKGgGaAloD0MIvFzEd+IdcUCUhpRSlGgVTRwBaBZHQKZUrQyhzvJ1fZQoaAZoCWgPQwj3Hi45btpxQJSGlFKUaBVL2mgWR0CmVNYTj/+9dX2UKGgGaAloD0MIILdfPlldc0CUhpRSlGgVTQQBaBZHQKZU2om5UcZ1fZQoaAZoCWgPQwjylUBK7MVRQJSGlFKUaBVL2GgWR0CmVT3wkPc0dX2UKGgGaAloD0MIUwPN5xyQcUCUhpRSlGgVTRYBaBZHQKZWKwY+B6N1fZQoaAZoCWgPQwgP7zmwnO5wQJSGlFKUaBVL4GgWR0CmVkg1WKdhdX2UKGgGaAloD0MItOidCjjXcUCUhpRSlGgVS/5oFkdAplbJ0bLlm3V9lChoBmgJaA9DCPTBMjb0Um9AlIaUUpRoFU0HAWgWR0CmVvI5o4+9dX2UKGgGaAloD0MIi8Iuit5ycECUhpRSlGgVS/toFkdAplhN1nuiOHV9lChoBmgJaA9DCHpQUIpW4HFAlIaUUpRoFUvxaBZHQKZYkEzO5ax1fZQoaAZoCWgPQwh4CU594LxxQJSGlFKUaBVL/2gWR0CmWauQ6p5vdX2UKGgGaAloD0MIsYhhh7EcckCUhpRSlGgVTQIBaBZHQKZaUXaakRB1fZQoaAZoCWgPQwgzw0ZZf2ZxQJSGlFKUaBVNDQFoFkdAplpRybQTmHV9lChoBmgJaA9DCPp+arw0Y3NAlIaUUpRoFUvhaBZHQKZaYY51eSl1fZQoaAZoCWgPQwgOvcXD+/5vQJSGlFKUaBVL7GgWR0CmWrNLDhtMdX2UKGgGaAloD0MInIpUGJt2c0CUhpRSlGgVS/FoFkdAplx0iD/VAnV9lChoBmgJaA9DCDTY1HnUQnJAlIaUUpRoFU0NAWgWR0CmXLwGGEf1dX2UKGgGaAloD0MI22lrRDDuckCUhpRSlGgVS+1oFkdAplzFaSs8xXV9lChoBmgJaA9DCFnfwORGmHBAlIaUUpRoFUv8aBZHQKZcy3ocJdB1fZQoaAZoCWgPQwi46GSptXBwQJSGlFKUaBVNCgFoFkdApl0N3dKujnV9lChoBmgJaA9DCFm+LsM/anJAlIaUUpRoFUv5aBZHQKZeQlEZzgd1fZQoaAZoCWgPQwiKWwUxUAVtQJSGlFKUaBVL/2gWR0CmXqTdcjZ+dX2UKGgGaAloD0MIjspN1BLnckCUhpRSlGgVS+hoFkdApl6vaL4ve3V9lChoBmgJaA9DCEz/klSmW3FAlIaUUpRoFU0BAWgWR0CmXwL56+nJdX2UKGgGaAloD0MIs9DOadZ1cUCUhpRSlGgVS+doFkdApl9l2LYPG3V9lChoBmgJaA9DCM5uLZPhp1BAlIaUUpRoFUupaBZHQKZfbsMy8Bd1fZQoaAZoCWgPQwjbNSGtMZVxQJSGlFKUaBVNAwFoFkdApmAG7+T/yXV9lChoBmgJaA9DCKRskbRbtnBAlIaUUpRoFUvtaBZHQKZgesYEW691fZQoaAZoCWgPQwh7iEZ3kLRyQJSGlFKUaBVL62gWR0CmYHoJAt4BdX2UKGgGaAloD0MI36P+esXxc0CUhpRSlGgVTQwBaBZHQKZgp0zTF2p1fZQoaAZoCWgPQwicGf1oOJxwQJSGlFKUaBVNBwFoFkdApmDrgTAWSHV9lChoBmgJaA9DCOvld5oMkHFAlIaUUpRoFUvbaBZHQKZiOXMyJsR1fZQoaAZoCWgPQwirItxkVKJyQJSGlFKUaBVL8WgWR0CmY7j1f3N+dX2UKGgGaAloD0MIgjgPJ7DBckCUhpRSlGgVS+hoFkdApmO5Fqi48XV9lChoBmgJaA9DCKfs9IO6mHFAlIaUUpRoFU0BAWgWR0CmZDK5CngpdX2UKGgGaAloD0MI9GxWfa4sc0CUhpRSlGgVTQsBaBZHQKZkiwu/UON1fZQoaAZoCWgPQwigpSvYxs9vQJSGlFKUaBVNAAFoFkdApmVyuOjqOnV9lChoBmgJaA9DCLQB2IAI5W9AlIaUUpRoFU0bAWgWR0CmZcR+rlvIdX2UKGgGaAloD0MIPe/GgkJBb0CUhpRSlGgVTRABaBZHQKZlySBbwBp1fZQoaAZoCWgPQwgSwTi4dHdyQJSGlFKUaBVL/mgWR0CmZc5RTCLudX2UKGgGaAloD0MIvJS6ZBwBbkCUhpRSlGgVS+1oFkdApmX11B+nZXV9lChoBmgJaA9DCLhYUYPpXnBAlIaUUpRoFU0GAWgWR0CmZlqjSG8FdX2UKGgGaAloD0MIVB1yM9wvcUCUhpRSlGgVS/ZoFkdApmaZFb3XZ3V9lChoBmgJaA9DCIV6+gj8W3JAlIaUUpRoFUv7aBZHQKZnPiOvMbF1fZQoaAZoCWgPQwi+9WG90bluQJSGlFKUaBVNEwFoFkdApmgM3ZPEbnV9lChoBmgJaA9DCOLoKt1dg25AlIaUUpRoFU0LAWgWR0CmaBl2/zredX2UKGgGaAloD0MIOgfPhKaUcECUhpRSlGgVTQUBaBZHQKZoaQcPvrp1fZQoaAZoCWgPQwioHJPFvZByQJSGlFKUaBVL8WgWR0CmaKrksBhhdX2UKGgGaAloD0MIdjQO9ftzckCUhpRSlGgVS+toFkdApmlU96kZaXV9lChoBmgJaA9DCJbrbTMVLXJAlIaUUpRoFUviaBZHQKZpwapgkTp1fZQoaAZoCWgPQwiWehaEsgBwQJSGlFKUaBVNBAFoFkdApmn+NgjQiXV9lChoBmgJaA9DCDf/rzqyK3BAlIaUUpRoFUv1aBZHQKZqCxxkupV1fZQoaAZoCWgPQwhNZVHYBRZyQJSGlFKUaBVL72gWR0Cma+d4VymzdX2UKGgGaAloD0MIOey+Y/gJcUCUhpRSlGgVS+5oFkdApmvoG8mKInV9lChoBmgJaA9DCAKDpE9rV3NAlIaUUpRoFUvvaBZHQKZr8R2bG3p1fZQoaAZoCWgPQwi7fOvD+qpyQJSGlFKUaBVNFAFoFkdApmxYHzH0b3V9lChoBmgJaA9DCNBHGXGBRXBAlIaUUpRoFUviaBZHQKZshJZntfJ1fZQoaAZoCWgPQwhLk1LQbQVxQJSGlFKUaBVNDgFoFkdApm0bHdXT3XV9lChoBmgJaA9DCML6P4c513FAlIaUUpRoFUvsaBZHQKZtUy4Wk8B1fZQoaAZoCWgPQwiny2JiszhyQJSGlFKUaBVL/2gWR0CmbsfW1+iKdX2UKGgGaAloD0MISUikbTxccECUhpRSlGgVS+1oFkdApm8CbF0gbXV9lChoBmgJaA9DCFAYlGn013FAlIaUUpRoFUv7aBZHQKZvi/47A+J1fZQoaAZoCWgPQwiKARJNIAduQJSGlFKUaBVL8mgWR0Cmb5VQhwERdWUu"
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 396,
|
76 |
+
"n_steps": 1024,
|
77 |
+
"gamma": 0.999,
|
78 |
+
"gae_lambda": 0.98,
|
79 |
+
"ent_coef": 0.01,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 4,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VidW50dS9tYW1iYWZvcmdlL2VudnMvc2IzXzM4L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91YnVudHUvbWFtYmFmb3JnZS9lbnZzL3NiM18zOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null
|
91 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d51a1b65105ff5aaa09e39089128304fc068a8d4817bc89dcdfb2dca783adcf0
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50a0047f7ed490efcdd3fd73a9296cdf54ea2ae3a7092971251c458b31c6da86
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Wed Mar 2 00:30:59 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (207 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.34384246114763, "std_reward": 16.432753383772763, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T17:31:04.636432"}
|