File size: 3,739 Bytes
8c1cd30 bec3c81 38d02ea 8c1cd30 1e1c3e0 76e901a 8f63d5e 38d02ea 1e1c3e0 f34bbf1 dd8e486 bec3c81 231fe3b bec3c81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
language: en
tags:
- token-classification
- NER
- Biomedical
- Chemicals
datasets:
- BC5CDR-chemicals
- BC4CHEMD
license: apache-2.0
---
β
β
# Model Card for biobert Chemical NER
# Model Details
## Model Description
BioBERT model fine-tuned in NER task with BC5CDR-chemicals and BC4CHEMD corpus.
- **Developed by:** librAIry
- **Shared by [Optional]:** Alvaro A
- **Model type:** Token Classification
- **Language(s) (NLP):** More information needed
- **License:** Apache 2.0
- **Parent Model:** NER
- **Resources for more information:**
- [GitHub Repo](https://github.com/librairy/bio-ner)
- [Associated Paper](https://oa.upm.es/67933/)
β
β
# Uses
β
## Direct Use
This model can be used for the task of model is lost/undocumented.
It was fine-tuned in order to use it in a BioNER/BioNEN system which is available at the [GitHub Repo](https://github.com/librairy/bio-ner)
## Downstream Use [Optional]
More information needed.
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
β
β
β
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
β
# Training Details
## Training Data
More information needed
## Training Procedure
β
### Preprocessing
More information needed
β
β
### Speeds, Sizes, Times
More information needed
β
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
More information needed
### Factors
More information needed
### Metrics
More information needed
## Results
More information needed
β
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Fine-tuning process**: was done in Google Collab using a TPU.
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
β
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
More information needed.
# Citation
β
**BibTeX:**
More information needed.
# Glossary [optional]
More information needed
# More Information [optional]
More information needed
β
# Model Card Authors [optional]
Alvaro A in collaboration with Ezi Ozoani and the Hugging Face team
β
β
# Model Card Contact
More information needed
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
β
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("alvaroalon2/biobert_chemical_ner")
model = AutoModelForTokenClassification.from_pretrained("alvaroalon2/biobert_chemical_ner")
```
</details> |