Model save
Browse files- README.md +84 -0
- adapter_model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: roberta-large
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: roberta-large-finetuned-lora-captures
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# roberta-large-finetuned-lora-captures
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4657
|
22 |
+
- Accuracy: 0.9264
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0003
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- distributed_type: multi-GPU
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
|
56 |
+
| 0.2608 | 0.9994 | 772 | 0.3877 | 0.8888 |
|
57 |
+
| 0.3173 | 2.0 | 1545 | 0.3443 | 0.8932 |
|
58 |
+
| 0.2885 | 2.9994 | 2317 | 0.2995 | 0.9161 |
|
59 |
+
| 0.2566 | 4.0 | 3090 | 0.2884 | 0.9163 |
|
60 |
+
| 0.1908 | 4.9994 | 3862 | 0.3115 | 0.9140 |
|
61 |
+
| 0.1973 | 6.0 | 4635 | 0.2891 | 0.9186 |
|
62 |
+
| 0.1071 | 6.9994 | 5407 | 0.2913 | 0.9218 |
|
63 |
+
| 0.1177 | 8.0 | 6180 | 0.3057 | 0.9212 |
|
64 |
+
| 0.1775 | 8.9994 | 6952 | 0.3390 | 0.9184 |
|
65 |
+
| 0.0994 | 10.0 | 7725 | 0.3260 | 0.9218 |
|
66 |
+
| 0.08 | 10.9994 | 8497 | 0.3303 | 0.9264 |
|
67 |
+
| 0.1041 | 12.0 | 9270 | 0.3738 | 0.9209 |
|
68 |
+
| 0.0633 | 12.9994 | 10042 | 0.3629 | 0.9271 |
|
69 |
+
| 0.0253 | 14.0 | 10815 | 0.3967 | 0.9239 |
|
70 |
+
| 0.0625 | 14.9994 | 11587 | 0.4285 | 0.9246 |
|
71 |
+
| 0.0627 | 16.0 | 12360 | 0.4360 | 0.9244 |
|
72 |
+
| 0.0551 | 16.9994 | 13132 | 0.4430 | 0.9267 |
|
73 |
+
| 0.0545 | 18.0 | 13905 | 0.4695 | 0.9251 |
|
74 |
+
| 0.0434 | 18.9994 | 14677 | 0.4622 | 0.9271 |
|
75 |
+
| 0.021 | 19.9871 | 15440 | 0.4657 | 0.9264 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- PEFT 0.11.1
|
81 |
+
- Transformers 4.40.2
|
82 |
+
- Pytorch 2.3.0+cu121
|
83 |
+
- Datasets 2.19.1
|
84 |
+
- Tokenizers 0.19.0
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 7407672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:174f289230069d890d204166fda68fc276acc501ddef3773fa59627fd3460d09
|
3 |
size 7407672
|