heanu commited on
Commit
66119dd
·
1 Parent(s): fdd5b95

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -18
README.md CHANGED
@@ -27,36 +27,39 @@ The backbone model of COSMO is the [lm-adapted T5](https://huggingface.co/google
27
 
28
  ### How to use
29
 
 
 
 
 
30
  ```python
 
31
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
32
 
 
33
  tokenizer = AutoTokenizer.from_pretrained("allenai/cosmo-xl")
34
- model = AutoModelForSeq2SeqLM.from_pretrained("allenai/cosmo-xl")
35
- # model.to('cuda')
36
 
37
- def set_input(narrative, instruction, dialogue_history):
38
- input_text = " <turn> ".join(dialogue_history)
39
 
40
- if instruction != "":
41
- input_text = instruction + " <sep> " + input_text
42
 
43
- if narrative != "":
44
- input_text = narrative + " <sep> " + input_text
45
-
46
 
47
  return input_text
48
 
49
- def generate(narrative, instruction, dialogue_history):
50
  """
51
- narrative: the description of situation/context with the characters included (e.g., "David goes to an amusement park")
52
- instruction: the perspective/speaker instruction (e.g., "Imagine you are David and speak to his friend Sarah").
53
- dialogue history: the previous utterances in the dialogue in a list
54
  """
55
 
56
- input_text = set_input(narrative, instruction, dialogue_history)
57
 
58
- inputs = tokenizer([input_text], return_tensors="pt")
59
- # inputs = inputs.to('cuda')
60
  outputs = model.generate(inputs["input_ids"], max_new_tokens=128, temperature=1.0, top_p=.95, do_sample=True)
61
  response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
62
 
@@ -65,11 +68,11 @@ def generate(narrative, instruction, dialogue_history):
65
  situation = "Cosmo had a really fun time participating in the EMNLP conference at Abu Dhabi."
66
  instruction = "You are Cosmo and you are talking to a friend." # You can also leave the instruction empty
67
 
68
- dialogue = [
69
  "Hey, how was your trip to Abu Dhabi?"
70
  ]
71
 
72
- response = generate(situation, instruction, dialogue)
73
  print(response)
74
  ```
75
 
 
27
 
28
  ### How to use
29
 
30
+ > 💡 <b>Note:</b> The HuggingFace inference API for Cosmo is not working correctly, we gently guide you to [our repository](https://hyunw.kim/sodaverse) to try out the demo code!
31
+
32
+ Below is a simple code snippet to get Cosmo running :)
33
+
34
  ```python
35
+ import torch
36
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
37
 
38
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
39
  tokenizer = AutoTokenizer.from_pretrained("allenai/cosmo-xl")
40
+ model = AutoModelForSeq2SeqLM.from_pretrained("allenai/cosmo-xl").to(device)
 
41
 
42
+ def set_input(situation_narrative, role_instruction, conversation_history):
43
+ input_text = " <turn> ".join(conversation_history)
44
 
45
+ if role_instruction != "":
46
+ input_text = "{} <sep> {}".format(role_instruction, input_text)
47
 
48
+ if situation_narrative != "":
49
+ input_text = "{} <sep> {}".format(situation_narrative, input_text)
 
50
 
51
  return input_text
52
 
53
+ def generate(situation_narrative, role_instruction, conversation_history):
54
  """
55
+ situation_narrative: the description of situation/context with the characters included (e.g., "David goes to an amusement park")
56
+ role_instruction: the perspective/speaker instruction (e.g., "Imagine you are David and speak to his friend Sarah").
57
+ conversation_history: the previous utterances in the conversation in a list
58
  """
59
 
60
+ input_text = set_input(role_narrative, role_instruction, conversation_history)
61
 
62
+ inputs = tokenizer([input_text], return_tensors="pt").to(device)
 
63
  outputs = model.generate(inputs["input_ids"], max_new_tokens=128, temperature=1.0, top_p=.95, do_sample=True)
64
  response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
65
 
 
68
  situation = "Cosmo had a really fun time participating in the EMNLP conference at Abu Dhabi."
69
  instruction = "You are Cosmo and you are talking to a friend." # You can also leave the instruction empty
70
 
71
+ conversation = [
72
  "Hey, how was your trip to Abu Dhabi?"
73
  ]
74
 
75
+ response = generate(situation, instruction, conversation)
76
  print(response)
77
  ```
78