Update README.md
Browse files
README.md
CHANGED
@@ -27,36 +27,39 @@ The backbone model of COSMO is the [lm-adapted T5](https://huggingface.co/google
|
|
27 |
|
28 |
### How to use
|
29 |
|
|
|
|
|
|
|
|
|
30 |
```python
|
|
|
31 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
32 |
|
|
|
33 |
tokenizer = AutoTokenizer.from_pretrained("allenai/cosmo-xl")
|
34 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/cosmo-xl")
|
35 |
-
# model.to('cuda')
|
36 |
|
37 |
-
def set_input(
|
38 |
-
input_text = " <turn> ".join(
|
39 |
|
40 |
-
if
|
41 |
-
input_text =
|
42 |
|
43 |
-
if
|
44 |
-
input_text =
|
45 |
-
|
46 |
|
47 |
return input_text
|
48 |
|
49 |
-
def generate(
|
50 |
"""
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
"""
|
55 |
|
56 |
-
input_text = set_input(
|
57 |
|
58 |
-
inputs = tokenizer([input_text], return_tensors="pt")
|
59 |
-
# inputs = inputs.to('cuda')
|
60 |
outputs = model.generate(inputs["input_ids"], max_new_tokens=128, temperature=1.0, top_p=.95, do_sample=True)
|
61 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
62 |
|
@@ -65,11 +68,11 @@ def generate(narrative, instruction, dialogue_history):
|
|
65 |
situation = "Cosmo had a really fun time participating in the EMNLP conference at Abu Dhabi."
|
66 |
instruction = "You are Cosmo and you are talking to a friend." # You can also leave the instruction empty
|
67 |
|
68 |
-
|
69 |
"Hey, how was your trip to Abu Dhabi?"
|
70 |
]
|
71 |
|
72 |
-
response = generate(situation, instruction,
|
73 |
print(response)
|
74 |
```
|
75 |
|
|
|
27 |
|
28 |
### How to use
|
29 |
|
30 |
+
> 💡 <b>Note:</b> The HuggingFace inference API for Cosmo is not working correctly, we gently guide you to [our repository](https://hyunw.kim/sodaverse) to try out the demo code!
|
31 |
+
|
32 |
+
Below is a simple code snippet to get Cosmo running :)
|
33 |
+
|
34 |
```python
|
35 |
+
import torch
|
36 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
37 |
|
38 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
tokenizer = AutoTokenizer.from_pretrained("allenai/cosmo-xl")
|
40 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/cosmo-xl").to(device)
|
|
|
41 |
|
42 |
+
def set_input(situation_narrative, role_instruction, conversation_history):
|
43 |
+
input_text = " <turn> ".join(conversation_history)
|
44 |
|
45 |
+
if role_instruction != "":
|
46 |
+
input_text = "{} <sep> {}".format(role_instruction, input_text)
|
47 |
|
48 |
+
if situation_narrative != "":
|
49 |
+
input_text = "{} <sep> {}".format(situation_narrative, input_text)
|
|
|
50 |
|
51 |
return input_text
|
52 |
|
53 |
+
def generate(situation_narrative, role_instruction, conversation_history):
|
54 |
"""
|
55 |
+
situation_narrative: the description of situation/context with the characters included (e.g., "David goes to an amusement park")
|
56 |
+
role_instruction: the perspective/speaker instruction (e.g., "Imagine you are David and speak to his friend Sarah").
|
57 |
+
conversation_history: the previous utterances in the conversation in a list
|
58 |
"""
|
59 |
|
60 |
+
input_text = set_input(role_narrative, role_instruction, conversation_history)
|
61 |
|
62 |
+
inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
|
|
63 |
outputs = model.generate(inputs["input_ids"], max_new_tokens=128, temperature=1.0, top_p=.95, do_sample=True)
|
64 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
65 |
|
|
|
68 |
situation = "Cosmo had a really fun time participating in the EMNLP conference at Abu Dhabi."
|
69 |
instruction = "You are Cosmo and you are talking to a friend." # You can also leave the instruction empty
|
70 |
|
71 |
+
conversation = [
|
72 |
"Hey, how was your trip to Abu Dhabi?"
|
73 |
]
|
74 |
|
75 |
+
response = generate(situation, instruction, conversation)
|
76 |
print(response)
|
77 |
```
|
78 |
|