shanearora commited on
Commit
fbf9ed3
·
verified ·
1 Parent(s): ff10aa8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -24
README.md CHANGED
@@ -9,10 +9,7 @@ language:
9
 
10
  <img src="https://allenai.org/olmo/olmo-7b-animation.gif" alt="OLMo Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
11
 
12
- # Model Card for OLMo 1.7-7B-hf
13
-
14
- OLMo 1.7 7B is the latest version of the original [OLMo 7B](https://huggingface.co/allenai/OLMo-7B) model rocking a 24 point increase in MMLU, among other evaluations improvements, from an improved version of the Dolma dataset and staged training.
15
- **This version is for direct use with HuggingFace Transformers** from v4.40 on.
16
 
17
  OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
18
  The OLMo models are trained on the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset.
@@ -23,30 +20,25 @@ We release all code, checkpoints, logs, and details involved in training these m
23
  The core models released in this batch are the following:
24
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
25
  |------|--------|---------|-------------|-----------------|----------------|
26
- | [OLMo 1B](https://huggingface.co/allenai/OLMo-1B) | 3 Trillion |16 | 2048 | 16 | 2048 |
27
- | [OLMo 7B](https://huggingface.co/allenai/OLMo-7B) | 2.5 Trillion | 32 | 4096 | 32 | 2048 |
28
- | [OLMo 7B Twin 2T](https://huggingface.co/allenai/OLMo-7B-Twin-2T) | 2 Trillion | 32 | 4096 | 32 | 2048 |
29
- | [OLMo 1.7-7B](https://huggingface.co/allenai/OLMo-1.7-7B) | 2.05 Trillion | 32 | 4096 | 32 | 4096 |
30
-
31
- *Note: OLMo 1.7-7B also includes QKV clipping.*
32
 
33
 
34
  [Coming soon] We are releasing many checkpoints for these models, for every 1000 training steps.
35
- The naming convention is `step1000-tokens4B`.
36
 
37
  To load a specific model revision with HuggingFace, simply add the argument `revision`:
38
  ```bash
39
- olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-1.7-7B-hf", revision="step1000-tokens4B")
40
  ```
41
 
42
  All revisions/branches are listed in the file `revisions.txt`.
43
  Or, you can access all the revisions for the models via the following code snippet:
44
  ```python
45
  from huggingface_hub import list_repo_refs
46
- out = list_repo_refs("allenai/OLMo-1.7-7B-hf")
47
  branches = [b.name for b in out.branches]
48
  ```
49
- A few revisions were lost due to an error, but the vast majority are present.
50
 
51
  ### Model Description
52
 
@@ -80,8 +72,8 @@ Install Transformers [from source](https://huggingface.co/docs/transformers/en/i
80
  Now, proceed as usual with HuggingFace:
81
  ```python
82
  from transformers import AutoModelForCausalLM, AutoTokenizer
83
- olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-1.7-7B-hf")
84
- tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1.7-7B-hf")
85
  message = ["Language modeling is "]
86
  inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
87
  # optional verifying cuda
@@ -94,20 +86,14 @@ print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
94
  Alternatively, with the pipeline abstraction:
95
  ```python
96
  from transformers import pipeline
97
- olmo_pipe = pipeline("text-generation", model="allenai/OLMo-1.7-7B-hf")
98
  print(olmo_pipe("Language modeling is "))
99
  >> 'Language modeling is a branch of natural language processing that aims to...'
100
  ```
101
 
102
- Or, you can make this slightly faster by quantizing the model, e.g. `AutoModelForCausalLM.from_pretrained("allenai/OLMo-1.7-7B-hf", torch_dtype=torch.float16, load_in_8bit=True)` (requires `bitsandbytes`).
103
  The quantized model is more sensitive to typing / cuda, so it is recommended to pass the inputs as `inputs.input_ids.to('cuda')` to avoid potential issues.
104
 
105
- Note, you may see the following error if `ai2-olmo` is not installed correctly, which is caused by internal Python check naming. We'll update the code soon to make this error clearer.
106
- ```bash
107
- raise ImportError(
108
- ImportError: This modeling file requires the following packages that were not found in your environment: hf_olmo. Run `pip install hf_olmo`
109
- ```
110
-
111
  ### Fine-tuning
112
  Model fine-tuning can be done from the final checkpoint (the `main` revision of this model) or many intermediate checkpoints. Two recipes for tuning are available.
113
  1. Fine-tune with the OLMo repository:
 
9
 
10
  <img src="https://allenai.org/olmo/olmo-7b-animation.gif" alt="OLMo Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
11
 
12
+ # Model Card for OLMo 7B July 2024
 
 
 
13
 
14
  OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
15
  The OLMo models are trained on the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset.
 
20
  The core models released in this batch are the following:
21
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
22
  |------|--------|---------|-------------|-----------------|----------------|
23
+ | [OLMo 1B July 2024](https://huggingface.co/allenai/OLMo-1B-0724-hf) | 3.05 Trillion | 16 | 2048 | 16 | 4096 |
24
+ | [OLMo 7B July 2024](https://huggingface.co/allenai/OLMo-7B-0724-hf) | 2.75 Trillion | 32 | 4096 | 32 | 4096 |
 
 
 
 
25
 
26
 
27
  [Coming soon] We are releasing many checkpoints for these models, for every 1000 training steps.
28
+ The naming convention is `stepXXX-tokensYYYB`.
29
 
30
  To load a specific model revision with HuggingFace, simply add the argument `revision`:
31
  ```bash
32
+ olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-0424-hf", revision="step1000-tokens4B")
33
  ```
34
 
35
  All revisions/branches are listed in the file `revisions.txt`.
36
  Or, you can access all the revisions for the models via the following code snippet:
37
  ```python
38
  from huggingface_hub import list_repo_refs
39
+ out = list_repo_refs("allenai/OLMo-7B-0424-hf")
40
  branches = [b.name for b in out.branches]
41
  ```
 
42
 
43
  ### Model Description
44
 
 
72
  Now, proceed as usual with HuggingFace:
73
  ```python
74
  from transformers import AutoModelForCausalLM, AutoTokenizer
75
+ olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-0424-hf")
76
+ tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B-0424-hf")
77
  message = ["Language modeling is "]
78
  inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
79
  # optional verifying cuda
 
86
  Alternatively, with the pipeline abstraction:
87
  ```python
88
  from transformers import pipeline
89
+ olmo_pipe = pipeline("text-generation", model="allenai/OLMo-7B-0424-hf")
90
  print(olmo_pipe("Language modeling is "))
91
  >> 'Language modeling is a branch of natural language processing that aims to...'
92
  ```
93
 
94
+ Or, you can make this slightly faster by quantizing the model, e.g. `AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-0424-hf", torch_dtype=torch.float16, load_in_8bit=True)` (requires `bitsandbytes`).
95
  The quantized model is more sensitive to typing / cuda, so it is recommended to pass the inputs as `inputs.input_ids.to('cuda')` to avoid potential issues.
96
 
 
 
 
 
 
 
97
  ### Fine-tuning
98
  Model fine-tuning can be done from the final checkpoint (the `main` revision of this model) or many intermediate checkpoints. Two recipes for tuning are available.
99
  1. Fine-tune with the OLMo repository: