File size: 9,434 Bytes
c577e1a d0e68c7 21650ab 2b75b49 21650ab 2b75b49 21650ab 2b75b49 d0e68c7 2b75b49 d0e68c7 3672bd2 d0e68c7 8ce056a d0e68c7 513e8ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
license: gpl-3.0
datasets:
- alimotahharynia/approved_drug_target
language:
- en
base_model:
- openai-community/gpt2
- liyuesen/druggpt
pipeline_tag: text-generation
library_name: transformers
tags:
- chemistry
- biology
- medical
---
# DrugGen: Advancing Drug Discovery with Large Language Models and Reinforcement Learning Feedback
DrugGen is a GPT-2 based model specialized for generating drug-like SMILES structures based on protein sequence. The model leverages the characteristics of approved drug targets and has been trained through both supervised fine-tuning and reinforcement learning techniques to enhance its ability to generate chemically valid, safe, and effective structures.
## Model Details
- Model Name: DrugGen
- Training Paradigm: Supervised Fine-Tuning (SFT) + Proximal Policy Optimization (PPO)
- Input: Protein Sequence
- Output: SMILES Structure
- Training Libraries: Hugging Face’s transformers and Transformer Reinforcement Learning (TRL)
- Model Sources: liyuesen/druggpt
## How to Get Started with the Model
- DrugGen can be used via command-line interface (CLI) or integration into Python scripts.
### Installation
#### Clone the repository and navigate to its directory
```bash
git clone https://github.com/mahsasheikh/DrugGen.git
cd DrugGen
```
#### Install dependencies
```bash
pip3 install -r requirements.txt
```
### Command-Line Interface
DrugGen provides a CLI to generate SMILES structures based on UniProt IDs, protein sequences, or both.
#### Generating SMILES Structures
```bash
python3 drugGen_generator_cli.py --uniprot_ids <UniProt_IDs> --sequences <Protein_Sequences> --num_generated <Number_of_Structures> --output_file <Output_File_Name>
```
#### Example Command
```bash
python3 drugGen_generator_cli.py --uniprot_ids P12821 P37231 --sequences "MGAASGRRGPGLLLPLPLLLLLPPQPALALDPGLQPGNFSADEAGAQLFAQSYNSSAEQVLFQSVAASWAHDTNITAENARRQEEAALLSQEFAEAWGQKAKELYEPIWQNFTDPQLRRIIGAVRTLGSANLPLAKRQQYNALLSNMSRIYSTAKVCLPNKTATCWSLDPDLTNILASSRSYAMLLFAWEGWHNAAGIPLKPLYEDFTALSNEAYKQDGFTDTGAYWRSWYNSPTFEDDLEHLYQQLEPLYLNLHAFVRRALHRRYGDRYINLRGPIPAHLLGDMWAQSWENIYDMVVPFPDKPNLDVTSTMLQQGWNATHMFRVAEEFFTSLELSPMPPEFWEGSMLEKPADGREVVCHASAWDFYNRKDFRIKQCTRVTMDQLSTVHHEMGHIQYYLQYKDLPVSLRRGANPGFHEAIGDVLALSVSTPEHLHKIGLLDRVTNDTESDINYLLKMALEKIAFLPFGYLVDQWRWGVFSGRTPPSRYNFDWWYLRTKYQGICPPVTRNETHFDAGAKFHVPNVTPYIRYFVSFVLQFQFHEALCKEAGYEGPLHQCDIYRSTKAGAKLRKVLQAGSSRPWQEVLKDMVGLDALDAQPLLKYFQPVTQWLQEQNQQNGEVLGWPEYQWHPPLPDNYPEGIDLVTDEAEASKFVEEYDRTSQVVWNEYAEANWNYNTNITTETSKILLQKNMQIANHTLKYGTQARKFDVNQLQNTTIKRIIKKVQDLERAALPAQELEEYNKILLDMETTYSVATVCHPNGSCLQLEPDLTNVMATSRKYEDLLWAWEGWRDKAGRAILQFYPKYVELINQAARLNGYVDAGDSWRSMYETPSLEQDLERLFQELQPLYLNLHAYVRRALHRHYGAQHINLEGPIPAHLLGNMWAQTWSNIYDLVVPFPSAPSMDTTEAMLKQGWTPRRMFKEADDFFTSLGLLPVPPEFWNKSMLEKPTDGREVVCHASAWDFYNGKDFRIKQCTTVNLEDLVVAHHEMGHIQYFMQYKDLPVALREGANPGFHEAIGDVLALSVSTPKHLHSLNLLSSEGGSDEHDINFLMKMALDKIAFIPFSYLVDQWRWRVFDGSITKENYNQEWWSLRLKYQGLCPPVPRTQGDFDPGAKFHIPSSVPYIRYFVSFIIQFQFHEALCQAAGHTGPLHKCDIYQSKEAGQRLATAMKLGFSRPWPEAMQLITGQPNMSASAMLSYFKPLLDWLRTENELHGEKLGWPQYNWTPNSARSEGPLPDSGRVSFLGLDLDAQQARVGQWLLLFLGIALLVATLGLSQRLFSIRHRSLHRHSHGPQFGSEVELRHS" --num_generated 10 --output_file g_smiles_test.txt
```
#### Parameters
- uniprot_ids: Space-separated UniProt IDs.
- sequences: Space-seperated protein sequences in string format.
- num_generated: Number of unique SMILES structures to generate.
- output_file: Name of the output file to save the generated structures.
### Python Integration
```python
# Example call for inference using only sequences
from drugGen_generator import run_inference
run_inference(
sequences=[ "MGAASGRRGPGLLLPLPLLLLLPPQPALALDPGLQPGNFSADEAGAQLFAQSYNSSAEQVLFQSVAASWAHDTNITAENARRQEEAALLSQEFAEAWGQKAKELYEPIWQNFTDPQLRRIIGAVRTLGSANLPLAKRQQYNALLSNMSRIYSTAKVCLPNKTATCWSLDPDLTNILASSRSYAMLLFAWEGWHNAAGIPLKPLYEDFTALSNEAYKQDGFTDTGAYWRSWYNSPTFEDDLEHLYQQLEPLYLNLHAFVRRALHRRYGDRYINLRGPIPAHLLGDMWAQSWENIYDMVVPFPDKPNLDVTSTMLQQGWNATHMFRVAEEFFTSLELSPMPPEFWEGSMLEKPADGREVVCHASAWDFYNRKDFRIKQCTRVTMDQLSTVHHEMGHIQYYLQYKDLPVSLRRGANPGFHEAIGDVLALSVSTPEHLHKIGLLDRVTNDTESDINYLLKMALEKIAFLPFGYLVDQWRWGVFSGRTPPSRYNFDWWYLRTKYQGICPPVTRNETHFDAGAKFHVPNVTPYIRYFVSFVLQFQFHEALCKEAGYEGPLHQCDIYRSTKAGAKLRKVLQAGSSRPWQEVLKDMVGLDALDAQPLLKYFQPVTQWLQEQNQQNGEVLGWPEYQWHPPLPDNYPEGIDLVTDEAEASKFVEEYDRTSQVVWNEYAEANWNYNTNITTETSKILLQKNMQIANHTLKYGTQARKFDVNQLQNTTIKRIIKKVQDLERAALPAQELEEYNKILLDMETTYSVATVCHPNGSCLQLEPDLTNVMATSRKYEDLLWAWEGWRDKAGRAILQFYPKYVELINQAARLNGYVDAGDSWRSMYETPSLEQDLERLFQELQPLYLNLHAYVRRALHRHYGAQHINLEGPIPAHLLGNMWAQTWSNIYDLVVPFPSAPSMDTTEAMLKQGWTPRRMFKEADDFFTSLGLLPVPPEFWNKSMLEKPTDGREVVCHASAWDFYNGKDFRIKQCTTVNLEDLVVAHHEMGHIQYFMQYKDLPVALREGANPGFHEAIGDVLALSVSTPKHLHSLNLLSSEGGSDEHDINFLMKMALDKIAFIPFSYLVDQWRWRVFDGSITKENYNQEWWSLRLKYQGLCPPVPRTQGDFDPGAKFHIPSSVPYIRYFVSFIIQFQFHEALCQAAGHTGPLHKCDIYQSKEAGQRLATAMKLGFSRPWPEAMQLITGQPNMSASAMLSYFKPLLDWLRTENELHGEKLGWPQYNWTPNSARSEGPLPDSGRVSFLGLDLDAQQARVGQWLLLFLGIALLVATLGLSQRLFSIRHRSLHRHSHGPQFGSEVELRHS"],
num_generated=10,
output_file="output_SMILES.txt"
)
# Example call for inference using only UniProt IDs
from drugGen_generator import run_inference
run_inference(
uniprot_ids=["P12821", "P37231"],
num_generated=10,
output_file="output_SMILES.txt"
)
# Example call for inference using both UniProt IDs and sequences
run_inference(
sequences=["MGAASGRRGPGLLLPLPLLLLLPPQPALALDPGLQPGNFSADEAGAQLFAQSYNSSAEQVLFQSVAASWAHDTNITAENARRQEEAALLSQEFAEAWGQKAKELYEPIWQNFTDPQLRRIIGAVRTLGSANLPLAKRQQYNALLSNMSRIYSTAKVCLPNKTATCWSLDPDLTNILASSRSYAMLLFAWEGWHNAAGIPLKPLYEDFTALSNEAYKQDGFTDTGAYWRSWYNSPTFEDDLEHLYQQLEPLYLNLHAFVRRALHRRYGDRYINLRGPIPAHLLGDMWAQSWENIYDMVVPFPDKPNLDVTSTMLQQGWNATHMFRVAEEFFTSLELSPMPPEFWEGSMLEKPADGREVVCHASAWDFYNRKDFRIKQCTRVTMDQLSTVHHEMGHIQYYLQYKDLPVSLRRGANPGFHEAIGDVLALSVSTPEHLHKIGLLDRVTNDTESDINYLLKMALEKIAFLPFGYLVDQWRWGVFSGRTPPSRYNFDWWYLRTKYQGICPPVTRNETHFDAGAKFHVPNVTPYIRYFVSFVLQFQFHEALCKEAGYEGPLHQCDIYRSTKAGAKLRKVLQAGSSRPWQEVLKDMVGLDALDAQPLLKYFQPVTQWLQEQNQQNGEVLGWPEYQWHPPLPDNYPEGIDLVTDEAEASKFVEEYDRTSQVVWNEYAEANWNYNTNITTETSKILLQKNMQIANHTLKYGTQARKFDVNQLQNTTIKRIIKKVQDLERAALPAQELEEYNKILLDMETTYSVATVCHPNGSCLQLEPDLTNVMATSRKYEDLLWAWEGWRDKAGRAILQFYPKYVELINQAARLNGYVDAGDSWRSMYETPSLEQDLERLFQELQPLYLNLHAYVRRALHRHYGAQHINLEGPIPAHLLGNMWAQTWSNIYDLVVPFPSAPSMDTTEAMLKQGWTPRRMFKEADDFFTSLGLLPVPPEFWNKSMLEKPTDGREVVCHASAWDFYNGKDFRIKQCTTVNLEDLVVAHHEMGHIQYFMQYKDLPVALREGANPGFHEAIGDVLALSVSTPKHLHSLNLLSSEGGSDEHDINFLMKMALDKIAFIPFSYLVDQWRWRVFDGSITKENYNQEWWSLRLKYQGLCPPVPRTQGDFDPGAKFHIPSSVPYIRYFVSFIIQFQFHEALCQAAGHTGPLHKCDIYQSKEAGQRLATAMKLGFSRPWPEAMQLITGQPNMSASAMLSYFKPLLDWLRTENELHGEKLGWPQYNWTPNSARSEGPLPDSGRVSFLGLDLDAQQARVGQWLLLFLGIALLVATLGLSQRLFSIRHRSLHRHSHGPQFGSEVELRHS"],
uniprot_ids=["P12821", "P37231"],
num_generated=10,
output_file="output_SMILES.txt"
)
```
## Training Details
### Training Data
[alimotahharynia/approved_drug_target](https://huggingface.co/datasets/alimotahharynia/approved_drug_target)
- This dataset contains approved SMILES-protein sequences pairs data. It was used to train the model for generating SMILES strings.
### Training Procedure
- **Training regime:** fp32
#### Supervised Fine-Tuning
DrugGen was initially trained using supervised fine-tuning on a curated dataset of approved drug targets.
- **Training: validation sets** (ratio of 8:2)
- **sft_config**
- `num_train_epochs= 5`
- `per_device_train_batch_size= 8`
- `per_device_eval_batch_size= 8`
- `evaluation_strategy="steps"`
- `save_strategy="epoch"`
- `eval_steps=50`
- `logging_steps=25`
- `logging_strategy="steps"`
- `do_eval=True`
- `do_train=True`
- `learning_rate=5e-4`
- `adam_epsilon=1e-08`
- `warmup_steps=100`
- `eval steps=50`
- `dataloader_drop_last=True`
- `save_safetensors=False`
- `max_seq_length=768`
- **AdamW optimizer**
- `lr=5e-4`
- `eps=1e-08`
- **scheduler**
- get_linear_schedule_with_warmup
#### Proximal Policy Optimization
- **Rollout:** Generates a response based on an input query. Generation parameters include:
- `do_sample=True`
- `top_k=9`
- `max_length=1024`
- `top_p=0.9`
- `bos_token_id=tokenizer.bos_token_id`
- `eos_token_id=tokenizer.eos_token_id`
- `pad_token_id=tokenizer.pad_token_id`
- `num_return_sequences=10`
In each epoch, generation continued until 30 unique small molecules were generated for each target.
- **Evaluation:** A reward function include:
- Binding affinity predictor: "Protein-Ligand Binding Affinity Prediction Using Pretrained Transformers was (PLAPT)"
- Customized invalid structure assessor: Based on RDKit library
- A multiplicative penalty of "0.7" when a generated SMILES matched a molecule present in the approved SMILES dataset.
- **Optimization:**
- **ppo_config**
- `mini_batch_size=8`
- `batch_size=240`
- `learning_rate=1.41e-5`
- `use_score_scaling=True`
- `use_score_norm=True`
Prompts with a tensor size greater than 768 were omitted, resulting in 2053 sequences (98.09% of the initial dataset).
## Citation
If you use this model in your research, please cite our paper:
```
@misc{sheikholeslami2024druggenadvancingdrugdiscovery,
title={DrugGen: Advancing Drug Discovery with Large Language Models and Reinforcement Learning Feedback},
author={Mahsa Sheikholeslami and Navid Mazrouei and Yousof Gheisari and Afshin Fasihi and Matin Irajpour and Ali Motahharynia},
year={2024},
eprint={2411.14157},
archivePrefix={arXiv},
primaryClass={q-bio.QM},
url={https://arxiv.org/abs/2411.14157},
}
``` |