File size: 6,285 Bytes
935f2fd d0c624a 935f2fd 04f8a1f f48e54a 510d0c9 b0a2789 f48e54a 935f2fd d0c624a a7e89e8 d0c624a ce03b58 a7e89e8 d0c624a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
---
title: Deep Learning 1
emoji: π
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.12.0
app_file: app.py
pinned: false
license: mit
language:
- en
tags:
- sports
- soccer
- epl
- arsenal
- chelsea
- liverpool
- man city
- man united
- image-classification
metrics:
- accuracy
library_name: keras
pipeline_tag: image-classification
---
# Model Card
## Overview
- **Model name:** Top 5 EPL Teams' Emblem Identifier
- **Model description:** Identifies the emblem of the top 5 English Premier League (EPL) teams from images using a convolutional neural network (CNN).
- **Authors:** Alif Al Hasan
- **Repository link:** https://huggingface.co/spaces/alifalhasan/deep-learning-1/tree/main
- **License:** MIT
- **Contact information:** [email protected]
## Performance
- **Metrics:** Accuracy (100%)
- **Dataset:** Approximately 5,000 images of EPL team emblems, balanced across classes. Sources and preprocessing steps described in detail further below.
## Data
- **Training data:**
- Size: 5,000 images
- Class distribution: Balanced (1,000 images per class)
- Sources: [English Premier League Logo Detection](https://www.kaggle.com/datasets/alexteboul/english-premier-league-logo-detection-20k-images)
- Preprocessing: Resizing to 224x224 pixels, normalization
- **Potential biases:** Currently unknown biases in the dataset.
## Inference
- **Input:**
- Format: JPEG or PNG images
- Size: 224x224 pixels
- Color space: RGB
- **Output:** Predicted class probabilities for each of the 5 EPL teams.
- **Inference API:** [https://huggingface.co/spaces/alifalhasan/deep-learning-1](https://huggingface.co/spaces/alifalhasan/deep-learning-1)
- **Usage instructions:** Simply upload an image of any of the EPL's top 5 team's emblem to get a prediction.
## Ethics
- **Potential biases:** The model may inherit biases from the training data, such as over- or under-representation of certain team emblems.
- **Mitigation strategies:** Further exploration of dataset biases and potential augmentation techniques to address them.
- **Ethical considerations:**
- Awareness of potential biases and limitations in the model's predictions.
- Responsible use of the model, avoiding harmful generalizations or discrimination.
- Respect for the rights and privacy of individuals and organizations associated with the EPL teams.
---
# Top 5 EPL Teams' Emblem Identifier
A simple and well designed web app to identify the emblem of the top 5 teams of **EPL(English Premier League)** namely **Arsenal, Chelsea, Liverpool, Manchester City** and **Manchester United**.
### Requirements
- [Python 3.11](https://python.org/)
- [NumPy](https://numpy.org/)
- [SciPy](https://scipy.org/)
- [Gradio](https://www.gradio.app/)
- [Tensorflow](https://tensorflow.org/)
### Table Of Contents
- [Introduction](#introduction)
- [Model Architecture](#model-architecture)
- [Project Architecture](#project-architecture)
- [How To Run](#how-to-run)
- [License](#license)
- [Contributor](#contributor)
### Introduction
A simple and well designed web app to identify the emblem of the top 5 teams of **EPL**. This model has been trained with a balanced dataset which contains almost **5k** images of the emblems of the teams.
### Model Architecture
The model utilizes a straightforward convolutional neural network (CNN) architecture, comprising the following layers:
1. **Convolutional Layer:**
- 32 filters, each of size 3x3
- ReLU activation function
- Input shape: 224x224x3 (RGB images)
- Extracts spatial features from input images.
2. **Max Pooling Layer:**
- Pool size: 2x2
- Reduces spatial dimensions for capturing more global features.
3. **Flattening Layer:**
- Flattens the 2D feature maps into a 1D vector for input to dense layers.
4. **Dense Layer 1:**
- 64 neurons
- ReLU activation function
5. **Output Layer (Dense Layer 2):**
- 5 neurons (matching the number of classes)
- Softmax activation to produce probability scores for each class.
**Key Points:**
- Input image size: 224x224 pixels
- Optimizer: Adam with a learning rate of 0.001
- Loss function: Categorical crossentropy
- Performance metric: Accuracy
**Visual Representation:**
[Input image (224x224x3)] --> [Conv2D] --> [MaxPooling2D] --> [Flatten] --> [Dense 1] --> [Output Layer (Dense 2)] --> [Predicted class]
### Prject Architecture
```
βββ data
β βββ arsenal - images of arsenal's emblem.
β βββ chelsea - images of chelsea's emblem.
β βββ liverpool - images of liverpool's emblem.
β βββ manchester-city - images of manchester-city's emblem.
β βββ manchester-united - images of united's emblem.
β
β
βββ model
β βββ football_logo_model.h5 - generated model.
β
β
βββ src
β βββ classify
β βββ classify.py - this module classifies the emblem from input image.
β βββ train
β βββ trainer.py - this module trains the model.
β
β
βββ app.py - this module starts the app interface.
β
β
βββ LICENSE - license file of this project.
β
β
βββ README.md - readme file of this project.
β
β
βββ requirements.txt - list of required packages.
```
### How To Run
First, install dependencies
```bash
# clone project
git clone https://huggingface.co/spaces/alifalhasan/deep-learning-1
# install project
cd deep-learning-1
pip install -r requirements.txt
```
Next, download the dataset from [here](https://drive.google.com/file/d/1O5Mm-86AlUf5fUYf1NS8J_t22h7h_UbQ/view?usp=sharing). First unzip the folder. **dataset** folder contains **five** more folders. Copy them and paste into the **data** directory of this project folder.
Now train the model using this command:
```bash
python src/train/trainer.py
```
Finally, deploy the model using this command:
```bash
python app.py
```
### License
Distributed under the MIT License. See `LICENSE` for more information.
### Contributor
Alif Al Hasan - [@alifalhasan](https://huggingface.co/alifalhasan) - [email protected]
Project Link: [https://huggingface.co/spaces/alifalhasan/deep-learning-1](https://huggingface.co/spaces/alifalhasan/deep-learning-1) |