hkunzhe commited on
Commit
16d64ee
·
verified ·
1 Parent(s): d373fa0

Delete README.md--commit-message=update README.md

Browse files
README.md--commit-message=update README.md DELETED
@@ -1,143 +0,0 @@
1
- # CogVideoX-Fun-V1.5-Reward-LoRAs
2
- ## Introduction
3
- We explore the Reward Backpropagation technique <sup>[1](#ref1) [2](#ref2)</sup> to optimized the generated videos by [CogVideoX-Fun-V1.5](https://github.com/aigc-apps/CogVideoX-Fun) for better alignment with human preferences.
4
- We provide the following pre-trained models (i.e. LoRAs) along with [the training script](https://github.com/aigc-apps/CogVideoX-Fun/blob/main/scripts/train_reward_lora.py). You can use these LoRAs to enhance the corresponding base model as a plug-in or train your own reward LoRA.
5
-
6
- For more details, please refer to our [GitHub repo](https://github.com/aigc-apps/CogVideoX-Fun).
7
-
8
- | Name | Base Model | Reward Model | Hugging Face | Description |
9
- |--|--|--|--|--|
10
- | CogVideoX-Fun-V1.5-5b-InP-HPS2.1.safetensors | [CogVideoX-Fun-V1.5-5b](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.5-5b-InP) | [HPS v2.1](https://github.com/tgxs002/HPSv2) | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.5-Reward-LoRAs/resolve/main/CogVideoX-Fun-V1.5-5b-InP-HPS2.1.safetensors) | Official HPS v2.1 reward LoRA (`rank=128` and `network_alpha=64`) for CogVideoX-Fun-V1.5-5b-InP. It is trained with a batch size of 8 for 1,500 steps.|
11
- | CogVideoX-Fun-V1.5-5b-InP-MPS.safetensors | [CogVideoX-Fun-V1.5-5b](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.5-5b-InP) | [MPS](https://github.com/Kwai-Kolors/MPS) | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.5-Reward-LoRAs/resolve/main/CogVideoX-Fun-V1.5-5b-InP-MPS.safetensors) | Official MPS reward LoRA (`rank=128` and `network_alpha=64`) for CogVideoX-Fun-V1.5-5b-InP. It is trained with a batch size of 8 for 5,500 steps.|
12
-
13
- ## Demo
14
- ### CogVideoX-Fun-V1.5-5B
15
-
16
- <table border="0" style="width: 100%; text-align: center; margin-top: 20px;">
17
- <thead>
18
- <tr>
19
- <th style="text-align: center;" width="10%">Prompt</sup></th>
20
- <th style="text-align: center;" width="30%">CogVideoX-Fun-V1.5-5B</th>
21
- <th style="text-align: center;" width="30%">CogVideoX-Fun-V1.5-5B <br> HPSv2.1 Reward LoRA</th>
22
- <th style="text-align: center;" width="30%">CogVideoX-Fun-V1.5-5B <br> MPS Reward LoRA</th>
23
- </tr>
24
- </thead>
25
- <tr>
26
- <td>
27
- A panda eats bamboo while a monkey swings from branch to branch
28
- </td>
29
- <td>
30
- <video src="https://github.com/user-attachments/assets/ec752b06-cb13-4f9d-9c47-260536deba49" width="100%" controls autoplay loop></video>
31
- </td>
32
- <td>
33
- <video src="https://github.com/user-attachments/assets/537a923c-fb64-474d-bbfb-c8ddf502a212" width="100%" controls autoplay loop></video>
34
- </td>
35
- <td>
36
- <video src="https://github.com/user-attachments/assets/6bb3b860-57d3-4ac3-8898-b72b40753f2f" width="100%" controls autoplay loop></video>
37
- </td>
38
- </tr>
39
- <tr>
40
- <td>
41
- A penguin waddles on the ice, a camel treks by
42
- </td>
43
- <td>
44
- <video src="https://github.com/user-attachments/assets/ad551233-5acf-4974-91cc-cd18591acbf4" width="100%" controls autoplay loop></video>
45
- </td>
46
- <td>
47
- <video src="https://github.com/user-attachments/assets/2763fe09-436b-4407-9e6d-385518e1720c" width="100%" controls autoplay loop></video>
48
- </td>
49
- <td>
50
- <video src="https://github.com/user-attachments/assets/19b93c29-5e7b-414f-914d-ae010f8faf29" width="100%" controls autoplay loop></video>
51
- </td>
52
- </tr>
53
- <tr>
54
- <td>
55
- Elderly artist with a white beard painting on a white canvas
56
- </td>
57
- <td>
58
- <video src="https://github.com/user-attachments/assets/3560f91f-c68f-4567-a880-e3297464fb89" width="100%" controls autoplay loop></video>
59
- </td>
60
- <td>
61
- <video src="https://github.com/user-attachments/assets/abbf827c-41e3-4e8b-9771-2f3b788985ca" width="100%" controls autoplay loop></video>
62
- </td>
63
- <td>
64
- <video src="https://github.com/user-attachments/assets/328c85ce-1d22-428d-bf6d-1152d0457563" width="100%" controls autoplay loop></video>
65
- </td>
66
- </tr>
67
- <tr>
68
- <td>
69
- Crystal cake shimmering beside a metal apple
70
- </td>
71
- <td>
72
- <video src="https://github.com/user-attachments/assets/a94c74d3-8b75-41c3-9b21-0d53f9c67781" width="100%" controls autoplay loop></video>
73
- </td>
74
- <td>
75
- <video src="https://github.com/user-attachments/assets/c9509e81-8bf7-4023-b8dd-1a3f7e5def3a" width="100%" controls autoplay loop></video>
76
- </td>
77
- <td>
78
- <video src="https://github.com/user-attachments/assets/37157443-0cc7-4371-9f24-ec228124c206" width="100%" controls autoplay loop></video>
79
- </td>
80
- </tr>
81
- </table>
82
-
83
- > [!NOTE]
84
- > The above test prompts are from <a href="https://github.com/KaiyueSun98/T2V-CompBench">T2V-CompBench</a>. All videos are generated with lora weight 0.7.
85
-
86
- ## Quick Start
87
- We provide a simple inference code to run CogVideoX-Fun-V1.5-5b-InP with its HPS2.1 reward LoRA.
88
-
89
- ```python
90
- import torch
91
- from diffusers import CogVideoXDDIMScheduler
92
-
93
- from cogvideox.models.transformer3d import CogVideoXTransformer3DModel
94
- from cogvideox.pipeline.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
95
- from cogvideox.utils.lora_utils import merge_lora
96
- from cogvideox.utils.utils import get_image_to_video_latent, save_videos_grid
97
-
98
- model_path = "alibaba-pai/CogVideoX-Fun-V1.5-5b-InP"
99
- lora_path = "alibaba-pai/CogVideoX-Fun-V1.5-Reward-LoRAs/CogVideoX-Fun-V1.5-5b-InP-HPS2.1.safetensors"
100
- lora_weight = 0.7
101
-
102
- prompt = "Pig with wings flying above a diamond mountain"
103
- sample_size = [512, 512]
104
- video_length = 85
105
-
106
- transformer = CogVideoXTransformer3DModel.from_pretrained_2d(model_path, subfolder="transformer").to(torch.bfloat16)
107
- scheduler = CogVideoXDDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
108
- pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained(
109
- model_path, transformer=transformer, scheduler=scheduler, torch_dtype=torch.bfloat16
110
- )
111
- pipeline.enable_model_cpu_offload()
112
- pipeline = merge_lora(pipeline, lora_path, lora_weight)
113
-
114
- generator = torch.Generator(device="cuda").manual_seed(42)
115
- input_video, input_video_mask, _ = get_image_to_video_latent(None, None, video_length=video_length, sample_size=sample_size)
116
- sample = pipeline(
117
- prompt,
118
- num_frames = video_length,
119
- negative_prompt = "bad detailed",
120
- height = sample_size[0],
121
- width = sample_size[1],
122
- generator = generator,
123
- guidance_scale = 7.0,
124
- num_inference_steps = 50,
125
- video = input_video,
126
- mask_video = input_video_mask,
127
- ).videos
128
-
129
- save_videos_grid(sample, "samples/output.mp4", fps=8)
130
- ```
131
-
132
- ## Limitations
133
- 1. We observe after training to a certain extent, the reward continues to increase, but the quality of the generated videos does not further improve.
134
- The model trickly learns some shortcuts (by adding artifacts in the background) to increase the reward (i.e., reward hacking).
135
- 2. Currently, there is still a lack of suitable preference models for video generation. Directly using image preference models cannot
136
- evaluate preferences along the temporal dimension (such as dynamism and consistency). Further more, We find using image preference models leads to a decrease
137
- in the dynamism of generated videos. Although this can be mitigated by computing the reward using only the first frame of the decoded video, the impact still persists.
138
-
139
- ## Reference
140
- <ol>
141
- <li id="ref1">Clark, Kevin, et al. "Directly fine-tuning diffusion models on differentiable rewards.". In ICLR 2024.</li>
142
- <li id="ref2">Prabhudesai, Mihir, et al. "Aligning text-to-image diffusion models with reward backpropagation." arXiv preprint arXiv:2310.03739 (2023).</li>
143
- </ol>