a2c-AntBulletEnv-v0 / config.json
alefarasin's picture
Initial commit
c2ebb0e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e4149d830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e4149d8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e4149d950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e4149d9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f8e4149da70>", "forward": "<function ActorCriticPolicy.forward at 0x7f8e4149db00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e4149db90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8e4149dc20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e4149dcb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e4149dd40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e4149ddd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8e414dce70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1891832, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660203129.3013718, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAV/OFvWcm3r+3OgHAx9eWvuL6476PKc67n1sJv/nyxb4fFQY/2PwgvxILpb52y2a/JF9xvuwNtT1nlxw/zLg/PzpioT9Obky8HTF2Phr7gz8Gyr69z7gkvyqFTD+NQLg+8bO7vzHE0T6Vs/+/6OdHPwcnOj4OCd+/3/QGwN1K5b7PU3Y/+WsJv6DPUz4W+32/IvhBP9uLlzyf7yM/yM5LPhqfDT+S5qC+A8I5P73SQb8SuaA/yD0OvEkYNz70R+I+e+mGPmxacD/TSV4/t26Yv/Gzu78xxNE+QCYAP+jnRz/l5wQ+uLpEPpQvJT9tG78/paTBvzAVir+FjAY/eQzWvlNKLT/R93O/RshwPuXI7b8IDne/vAtAP9072L6QYoY/ZdP7PWv/BT7aWjg/CN3/vnRGI79Exti+2T+ovnbtAEDxs7u/McTRPpWz/7/J6qO/5BEavkVggz/X0r4+TdWlPzi39b/4EQM/SW9sPuagnT3bavU+eG26P3teCj6o6mE+DgePvzX/V749OGG+rPKsvgyFiD66ED6/5l9NPo5ZBr36WAi/pOZCP4m9Mr/5e5y+4pIuPzHE0T5AJgA/yeqjv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHj76bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICuuw0+AAAAAKnb778AAAAAi4/2vAAAAAAQE/Y/AAAAAMf4x70AAAAAzun1PwAAAAD/+RA9AAAAALZZ2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8v+c1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf4gHvgAAAAArQfK/AAAAANHqLj0AAAAAW1nuPwAAAAByPik9AAAAAEVa+z8AAAAAxXwPPgAAAAAohPm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA++wxtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLvKzz0AAAAA0ILfvwAAAAB/vQM+AAAAAKyc/z8AAAAAp0rEvQAAAAASmew/AAAAABp4Vz0AAAAAntDmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOmUwbQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICJwOC9AAAAAEic9r8AAAAAzo6NvQAAAAB26+0/AAAAAM77arsAAAAA+3P/PwAAAADEk2M9AAAAAL/8+L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.05409600000000003, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJze97fHggqMAWyUTegDjAF0lEdApk29hCtzS3V9lChoBkdAnQHIjKPn0WgHTegDaAhHQKZO35WRzRx1fZQoaAZHQJh/zVbzK9xoB03oA2gIR0CmT2LLyMDPdX2UKGgGR0CdVEXDFZPmaAdN6ANoCEdAplHRvegte3V9lChoBkdAlyoORxLkCGgHTegDaAhHQKZaD6a9bot1fZQoaAZHQJtMBiTdLxtoB03oA2gIR0CmWyeQ2dd3dX2UKGgGR0Cfw/tVJcxCaAdN6ANoCEdAplupyQxN7HV9lChoBkdAmTV86q8142gHTegDaAhHQKZeG4G2TgV1fZQoaAZHQJT8X+717IFoB03oA2gIR0CmZm/mknCwdX2UKGgGR0CUoq1HvttzaAdN6ANoCEdApmeFEAo5P3V9lChoBkdAmZSsCo0hvGgHTegDaAhHQKZoCAUcn3N1fZQoaAZHQJpgjPRiPQxoB03oA2gIR0CmaovD50r9dX2UKGgGR0CcK9X1rZanaAdN6ANoCEdApnLixC6YmnV9lChoBkdAnVEGiYb832gHTegDaAhHQKZz+M7U5Ml1fZQoaAZHQJOiiAH3UQVoB03oA2gIR0CmdHu4G2TgdX2UKGgGR0CaLy9wWFewaAdN6ANoCEdApncEUZeiSXV9lChoBkdAmchvz4DcM2gHTegDaAhHQKZ/LA1vVEx1fZQoaAZHQJxKIDwH7gtoB03oA2gIR0CmgELdepn6dX2UKGgGR0CXgb5Lh73PaAdN6ANoCEdApoDKGzru6XV9lChoBkdAmgcW2PT5PGgHTegDaAhHQKaDQP+XJHR1fZQoaAZHQJr4U7o0Q9RoB03oA2gIR0Cmi2rzoUzsdX2UKGgGR0CYLnSTyJ9BaAdN6ANoCEdApoyCGvfTC3V9lChoBkdAm7+1BhQWN2gHTegDaAhHQKaNB+m3vx91fZQoaAZHQJkoM1qFh5RoB03oA2gIR0Cmj4FtTDO1dX2UKGgGR0CYrJZFXq7iaAdN6ANoCEdAppfjxwyZa3V9lChoBkdAmPPcM3IdVGgHTegDaAhHQKaY+tFrl/91fZQoaAZHQJei+39aUzNoB03oA2gIR0CmmX7qQiiZdX2UKGgGR0CZWdC8e0XxaAdN6ANoCEdAppv24wyqMnV9lChoBkdAlngtWQwK0GgHTegDaAhHQKalBpblijN1fZQoaAZHQJcfpmOEM9doB03oA2gIR0Cmpjt4Z/CqdX2UKGgGR0CZkn2xptaZaAdN6ANoCEdApqa8qWkadnV9lChoBkdAlyEZLytmtmgHTegDaAhHQKapSegctGx1fZQoaAZHQJltykwevIRoB03oA2gIR0CmsXoC+10DdX2UKGgGR0CaHIQGfPHDaAdN6ANoCEdAprKXqFAVwnV9lChoBkdAmnWe5z5oG2gHTegDaAhHQKazHLV4HHF1fZQoaAZHQJe73ksBhhJoB03oA2gIR0CmtZhWYF7ldX2UKGgGR0CXtQ5le4TcaAdN6ANoCEdApr3E7IT4+XV9lChoBkdAl8A3izcAR2gHTegDaAhHQKa+4N5t3wF1fZQoaAZHQJb5Eiliz9loB03oA2gIR0Cmv2Yd6sySdX2UKGgGR0CU+OaW5YozaAdN6ANoCEdApsHfyup0fnV9lChoBkdAlYGYZl4C62gHTegDaAhHQKbKKrsByS51fZQoaAZHQI7U8O5J9RdoB03oA2gIR0Cmyz8/lhgFdX2UKGgGR0CUsevCdjG2aAdN6ANoCEdApsu//3nIQ3V9lChoBkdAkrzThUBGQWgHTegDaAhHQKbOQxbB42V1fZQoaAZHQIiY+YIBzWBoB03oA2gIR0Cm1psyad+YdX2UKGgGR0CTQIdU83dcaAdN6ANoCEdAptew7T2FnXV9lChoBkdAlyrGBWgezWgHTegDaAhHQKbYMpVCHAR1fZQoaAZHQJh0ig5BC2NoB03oA2gIR0Cm2qyd4FA3dX2UKGgGR0CY4C1/lQuVaAdN6ANoCEdApuLWCXhOxnV9lChoBkdAme88jRlYl2gHTegDaAhHQKbj8mVJL/V1fZQoaAZHQJqSG11GLDRoB03oA2gIR0Cm5HUbkwN9dX2UKGgGR0CXxpsGPgejaAdN6ANoCEdApub2/zreInV9lChoBkdAkzHcpG4I8mgHTegDaAhHQKbvGWw/xDt1fZQoaAZHQJs/+hYeT3ZoB03oA2gIR0Cm8DYWk8A8dX2UKGgGR0CYpc/20zCUaAdN6ANoCEdApvC7KFIuoXV9lChoBkdAlHj+EIw/PmgHTegDaAhHQKbzPORDCxh1fZQoaAZHQJFhGAy2x6hoB03oA2gIR0Cm+7N+1Bt2dX2UKGgGR0CSBweyzHCGaAdN6ANoCEdApvzZ4fOlf3V9lChoBkdAiFGxiw0O3GgHTegDaAhHQKb9ZU6PsAx1fZQoaAZHQIdpnFglWwNoB03oA2gIR0Cm//FfAsTWdX2UKGgGR0CT3mPI4lyBaAdN6ANoCEdApwg6g00m+nV9lChoBkdAlVgJJwsGxGgHTegDaAhHQKcJWa2F36h1fZQoaAZHQJPHPuQZGaxoB03oA2gIR0CnCeEKmbb2dX2UKGgGR0CT5EPSDyvtaAdN6ANoCEdApwxx1/2Cd3V9lChoBkdAfAXGjKxLTWgHTegDaAhHQKcU2Qe3hGZ1fZQoaAZHQJQ1xsGgSOBoB03oA2gIR0CnFfzDXOGCdX2UKGgGR0CQ0ysKsuFpaAdN6ANoCEdApxaAS39aU3V9lChoBkdAlN3KbayrxWgHTegDaAhHQKcY/l1bJOp1fZQoaAZHQJMyqLMs6JZoB03oA2gIR0CnIUlEiMYNdX2UKGgGR0CSfbG7z06HaAdN6ANoCEdApyJnck+otXV9lChoBkdAkFOZMg2ZRmgHTegDaAhHQKci6UlAu7J1fZQoaAZHQJCR3X18LKFoB03oA2gIR0CnJWWnsLOSdX2UKGgGR0CWPO2QGOdYaAdN6ANoCEdApy20YsNDt3V9lChoBkdAmXKk4//vOWgHTegDaAhHQKcuzYQJ5Vx1fZQoaAZHQJXdVXZGrjpoB03oA2gIR0CnL085bQkYdX2UKGgGR0CUfEujRD1HaAdN6ANoCEdApzHU50bLlnV9lChoBkdAldc2qxTsIGgHTegDaAhHQKc6Jq/M4cZ1fZQoaAZHQJL6J7fHggpoB03oA2gIR0CnOz04zabndX2UKGgGR0CBn8miQDFIaAdN6ANoCEdApzvDm+0w8HV9lChoBkdAkztlnEl3QmgHTegDaAhHQKc+U3+dbxF1fZQoaAZHQI06y15Sm65oB03oA2gIR0CnRo3N1QqJdX2UKGgGR0CTvAnOSntOaAdN6ANoCEdAp0eyPXCj13V9lChoBkdAlBgglSjxkWgHTegDaAhHQKdIMbm2b5N1fZQoaAZHQJUlg6uGKyhoB03oA2gIR0CnSrmJ3xFzdX2UKGgGR0Cb0tGcFyJbaAdN6ANoCEdAp1MXv+fh/HV9lChoBkdAgXZ034sVcmgHTegDaAhHQKdUNl/Yrax1fZQoaAZHQIbvMjHGS6loB03oA2gIR0CnVLwQtjCpdX2UKGgGR0CKKbMh5gPVaAdN6ANoCEdAp1dQ0j1PFnV9lChoBkdAhofOMuOCG2gHTegDaAhHQKdfq0elsP91fZQoaAZHQI2DONkvsZ5oB03oA2gIR0CnYMRagVXWdX2UKGgGR0CQoCfkWAPNaAdN6ANoCEdAp2FFU2kzoHV9lChoBkdAkKv1HavicWgHTegDaAhHQKdjxq7iADt1fZQoaAZHQJj56TvAoG9oB03oA2gIR0CnbAj9OymidX2UKGgGR0CV28nXNC7caAdN6ANoCEdAp20h//echHV9lChoBkdAk53e+AVfu2gHTegDaAhHQKdtpK9PDYR1fZQoaAZHQJJeLIq9XcRoB03oA2gIR0CncCnoPkJbdX2UKGgGR0CXpl3H7xd6aAdN6ANoCEdAp3hOr+5vtXV9lChoBkdAmAjfl2eQMmgHTegDaAhHQKd5aflIVdp1fZQoaAZHQJiDaPgeii9oB03oA2gIR0Cneeq02LpBdX2UKGgGR0CTutZwGW2PaAdN6ANoCEdAp3xbCYTkAHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 59119, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}