alan314159 commited on
Commit
1481b2a
·
verified ·
1 Parent(s): 9e4e129

first commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.99 +/- 19.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x788af8dee7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x788af8dee840>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x788af8dee8e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x788af8dee980>", "_build": "<function ActorCriticPolicy._build at 0x788af8deea20>", "forward": "<function ActorCriticPolicy.forward at 0x788af8deeac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x788af8deeb60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x788af8deec00>", "_predict": "<function ActorCriticPolicy._predict at 0x788af8deeca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x788af8deed40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x788af8deede0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x788af8deee80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x788af8f45a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738112205507703321, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM014zx7LIC60OpPOd6PirXsew07/UhyuAAAgD8AAIA/mvttPKiBnj7yPyW7FrCGvhPAB7wufd88AAAAAAAAAAAAsOa6YuGyP7ihqb2rnZa+3ho7O443Dz0AAAAAAAAAABpHaj3L0zI/op35PGaVPL79SMk7hdFZPAAAAAAAAAAAzSyhPHsQirwMU6U8VJOAPQf9yT2l2XA8AACAPwAAgD+aURS79vA5usJ9Pbmej0G09E8AO7trYDgAAIA/AACAP5py97zh4KO6kmxfO9JEl7RlLTs6XJeSswAAgD8AAIA/AN3pvCnUA7rZl4s7fAEJOLFt0TvIVyS3AACAPwAAgD+zx7O9nN17vBvU+rt29B08jOLavW5VBT0AAAAAAACAP13enD5CGIg/4QoPvZ5snL7/gDA+UyrivQAAAAAAAAAAWviXvRSu+7hGwZM7d2s0tJeYAbzKjbG6AACAPwAAgD8z0p29KMOJvKv0UD0zjZo7KQ6wPIkIorwAAIA/AACAPwC4XDwU8KS6H44nO5yWEjeEqBw6HlUINgAAgD8AAIA/AJxuPHFtQrk9osU54mLetYeDkrtgK+y4AACAPwAAgD8zK4I8rpmVuqZKqDr07yA28Hbjuc0XEjUAAIA/AACAP83vl7327Fi6e6xnO41jhjhBIA86vGoKugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGhzci4axX6MAWyUTegDjAF0lEdAlehzzmOlwnV9lChoBkdAZ2tnVXmvGWgHTegDaAhHQJXo9ylvZRN1fZQoaAZHQEepF6Rhc7hoB00OAWgIR0CV6R6Ymb9ZdX2UKGgGR0BierrkbPyDaAdN6ANoCEdAle1ZOFg2InV9lChoBkfAGHDMNc4YJmgHTRABaAhHQJXwtfjS5RV1fZQoaAZHQGQEV6mfoRtoB03oA2gIR0CV8UufmLccdX2UKGgGR0BjLcw35vcaaAdN6ANoCEdAlfG0GqxTsXV9lChoBkdAZAmMH8jzI2gHTegDaAhHQJXx6N0eU6h1fZQoaAZHQGQ9DBVMmF9oB03oA2gIR0CV8iN/vv0AdX2UKGgGR0BilWt+1Bt2aAdN6ANoCEdAlg18yWRigHV9lChoBkdAOk0WhysCDGgHTQIBaAhHQJYP9DjR2KV1fZQoaAZHQGHv22oegctoB03oA2gIR0CWGlN3GGVSdX2UKGgGR0Bmu4PwuuifaAdN6ANoCEdAlh3dZid8RnV9lChoBkdAZoOMYMvysmgHTegDaAhHQJYij+wTufF1fZQoaAZHQGabzS1E3KloB03oA2gIR0CWJ5hbW3BpdX2UKGgGR0BinV1p0wJxaAdN6ANoCEdAljG+pKjBVXV9lChoBkdAVvlSeiBXjmgHTegDaAhHQJYyee8PFvR1fZQoaAZHQGDq3k5p8F9oB03oA2gIR0CWM2+23KB/dX2UKGgGR0BjpSup0fYBaAdN6ANoCEdAljP7GJemenV9lChoBkdAYFQyXUpd8mgHTegDaAhHQJY0I7q6e5F1fZQoaAZHQFdE4j8k2P1oB00bAWgIR0CWN+SBshxHdX2UKGgGR0BgKZh6Skj5aAdN6ANoCEdAljitwFTvRnV9lChoBkdAZWBDZ13dK2gHTegDaAhHQJY73oouwot1fZQoaAZHQFzmvAXVLBdoB03oA2gIR0CWPHVQQ+UydX2UKGgGR0BhdJ95Qgs9aAdN6ANoCEdAljzpimVJMHV9lChoBkdAZfCVIqbz9WgHTegDaAhHQJY9ZAOavzR1fZQoaAZHQFAtbN8ma6VoB00qAWgIR0CWU7WSEDhcdX2UKGgGR0BmH5kK/mDEaAdN6ANoCEdAllrwuZkTYnV9lChoBkdATNLnaFmFrWgHS+xoCEdAllvqhtcfNnV9lChoBkdAYHbuIhyKemgHTegDaAhHQJZcwzYVZcN1fZQoaAZHQF5CIfKZDzBoB03oA2gIR0CWZA2+wkgPdX2UKGgGR0BioMqpcX3yaAdN6ANoCEdAlmdhpDeCTXV9lChoBkdARMXzQNTcZmgHTQIBaAhHQJZpbAIppex1fZQoaAZHQGJsyDZlFttoB03oA2gIR0CWa92sJY1YdX2UKGgGR0BQA6SLZSNwaAdNCwFoCEdAlnsHJgb6xnV9lChoBkdAMokhvBJqZmgHS/VoCEdAlnz/wRXfZXV9lChoBkdAZYc5Lh73PGgHTegDaAhHQJZ+e6GxlhB1fZQoaAZHQGFyGC7K7qZoB03oA2gIR0CWf5O9nK4hdX2UKGgGR0BkZXV/c32maAdN6ANoCEdAloApbyH2y3V9lChoBkdAZmllA/s3Q2gHTegDaAhHQJaAUAU+LWJ1fZQoaAZHQGdrSpiqhlFoB03oA2gIR0CWhEQ79ycTdX2UKGgGR0BmQ+HP/rB1aAdN6ANoCEdAloUFqrR0EHV9lChoBkdAYVHQpnYg72gHTegDaAhHQJaIFZ1V5rx1fZQoaAZHQGLcwwK0D2doB03oA2gIR0CWiJyWzF/AdX2UKGgGR0BdcjwH7gsLaAdN6ANoCEdAlokCY9gWrXV9lChoBkdASUNgSeyzHGgHS+toCEdAlotPMGHHm3V9lChoBkdAYpHCN0eU6mgHTegDaAhHQJaMK3c580F1fZQoaAZHQHI6ugte2NNoB02VA2gIR0CWoQpCKJl8dX2UKGgGR0BjKB+z+m3waAdN6ANoCEdAlqZXIyTINnV9lChoBkdAYu69OARTTGgHTegDaAhHQJawyM4tHx11fZQoaAZHQGGAk4FRpDhoB03oA2gIR0CWtLV0Lc9GdX2UKGgGR0BiaFn003wTaAdN6ANoCEdAlsfGvwEyL3V9lChoBkdAZnINDtw71mgHTegDaAhHQJbJF0xM3611fZQoaAZHQGL2ERradtloB03oA2gIR0CWykiKR+z/dX2UKGgGR0BitRR/EwWWaAdN6ANoCEdAlsszo2XLNnV9lChoBkdAYJ4jvd/KAGgHTegDaAhHQJbLt7BwdbR1fZQoaAZHQGZD77TDwYtoB03oA2gIR0CWz49HMEA6dX2UKGgGR0Bjx6o86mwaaAdN6ANoCEdAltA/V3EAHXV9lChoBkdAaW/hvR7Z4GgHTegDaAhHQJbTCLEUCaJ1fZQoaAZHQGHZYgaFVT9oB03oA2gIR0CW04rhR64UdX2UKGgGR0BddUFnqVyFaAdN6ANoCEdAltPnKB/ZunV9lChoBkdAIGTKLbYbsGgHS/RoCEdAltYeocaOxXV9lChoBkdAZXJ7oB7u2WgHTegDaAhHQJbWR7TlT3t1fZQoaAZHQGGwuM+/xlRoB03oA2gIR0CW1xoScslLdX2UKGgGR0Bic6BK+SKWaAdN6ANoCEdAlu4neFcps3V9lChoBkdATPVFDv3JxWgHS+BoCEdAlu/U4WDYiHV9lChoBkdAQ2fEhq0ty2gHS/9oCEdAlvJJlFtsN3V9lChoBkdAY8mHFglWwWgHTegDaAhHQJbyqNHYpUh1fZQoaAZHQFPMRtgrpaBoB0vtaAhHQJbz6+zt1IR1fZQoaAZHQGLygpKBd2RoB03oA2gIR0CW+My9mHxjdX2UKGgGR0BPeBwMpgCwaAdL4mgIR0CW+o+Vkc0cdX2UKGgGR0BgMTtLL6k7aAdN6ANoCEdAlvukF4cFQnV9lChoBkdAQudRNyo4uWgHS/loCEdAlwi2CqZMMHV9lChoBkdAYB/x6v7m+2gHTegDaAhHQJcLztShrWR1fZQoaAZHQF52s41gpjNoB03oA2gIR0CXDQ5S3soldX2UKGgGR0Bph/fXPJJYaAdN6ANoCEdAlw6JjpcHGHV9lChoBkdAYsWEeyRjjWgHTegDaAhHQJcQehxo7FN1fZQoaAZHQF/kDaXa8HxoB03oA2gIR0CXFbAJswcpdX2UKGgGR0Bnqqo4uK4yaAdN6ANoCEdAlxagccU/OnV9lChoBkdATQoDA8B+4WgHS/BoCEdAlxhGzSkTH3V9lChoBkdAY0Tmg8KXwGgHTegDaAhHQJcaxsdkrgB1fZQoaAZHQGXwVO9FnZloB03oA2gIR0CXHgjcEeQudX2UKGgGR0BjrIetCAtnaAdN6ANoCEdAlx8X6qKgqXV9lChoBkdAYpY2CuloDmgHTegDaAhHQJc0DoFFDv51fZQoaAZHQGeaS/j81oBoB03oA2gIR0CXOSdbgTAWdX2UKGgGR0BoIneLvTgEaAdN6ANoCEdAlzmbsSkCWHV9lChoBkdAXQQNWluWKWgHTegDaAhHQJc7OC7K7qZ1fZQoaAZHQGClT0g8r7RoB03oA2gIR0CXQRlCkXUIdX2UKGgGR0BhrjP+n62waAdN6ANoCEdAl0PJuZThpHV9lChoBkdAZVBzFuNxVGgHTegDaAhHQJdaZMbm2b51fZQoaAZHQGcARJmNBGBoB03oA2gIR0CXW5I7/4qPdX2UKGgGR0Bm3IMMI/qxaAdN6ANoCEdAl1yx6KLsKXV9lChoBkdAYX9nZCfHxWgHTegDaAhHQJdeJsQ/X5F1fZQoaAZHQGHF+MAFPi1oB03oA2gIR0CXYhuy/sVtdX2UKGgGR0BlScijcmBwaAdN6ANoCEdAl2LVnyup0nV9lChoBkdAZqTck+otMGgHTegDaAhHQJdkDMt9QXR1fZQoaAZHQGUY2RJVbRpoB03oA2gIR0CXZlOXmeUZdX2UKGgGR0BlGGViWmgraAdN6ANoCEdAl2kmNrCWNXV9lChoBkdAYhgAp8WsR2gHTegDaAhHQJdqFEc81XN1fZQoaAZHQGPjiBf8dghoB03oA2gIR0CXbgHWz4UOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbbe7d2c755f6c562bddb2769054e390379b7299c6039a43d16dd7f9ce7e2593
3
+ size 148120
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x788af8dee7a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x788af8dee840>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x788af8dee8e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x788af8dee980>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x788af8deea20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x788af8deeac0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x788af8deeb60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x788af8deec00>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x788af8deeca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x788af8deed40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x788af8deede0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x788af8deee80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x788af8f45a00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1738112205507703321,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM014zx7LIC60OpPOd6PirXsew07/UhyuAAAgD8AAIA/mvttPKiBnj7yPyW7FrCGvhPAB7wufd88AAAAAAAAAAAAsOa6YuGyP7ihqb2rnZa+3ho7O443Dz0AAAAAAAAAABpHaj3L0zI/op35PGaVPL79SMk7hdFZPAAAAAAAAAAAzSyhPHsQirwMU6U8VJOAPQf9yT2l2XA8AACAPwAAgD+aURS79vA5usJ9Pbmej0G09E8AO7trYDgAAIA/AACAP5py97zh4KO6kmxfO9JEl7RlLTs6XJeSswAAgD8AAIA/AN3pvCnUA7rZl4s7fAEJOLFt0TvIVyS3AACAPwAAgD+zx7O9nN17vBvU+rt29B08jOLavW5VBT0AAAAAAACAP13enD5CGIg/4QoPvZ5snL7/gDA+UyrivQAAAAAAAAAAWviXvRSu+7hGwZM7d2s0tJeYAbzKjbG6AACAPwAAgD8z0p29KMOJvKv0UD0zjZo7KQ6wPIkIorwAAIA/AACAPwC4XDwU8KS6H44nO5yWEjeEqBw6HlUINgAAgD8AAIA/AJxuPHFtQrk9osU54mLetYeDkrtgK+y4AACAPwAAgD8zK4I8rpmVuqZKqDr07yA28Hbjuc0XEjUAAIA/AACAP83vl7327Fi6e6xnO41jhjhBIA86vGoKugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGhzci4axX6MAWyUTegDjAF0lEdAlehzzmOlwnV9lChoBkdAZ2tnVXmvGWgHTegDaAhHQJXo9ylvZRN1fZQoaAZHQEepF6Rhc7hoB00OAWgIR0CV6R6Ymb9ZdX2UKGgGR0BierrkbPyDaAdN6ANoCEdAle1ZOFg2InV9lChoBkfAGHDMNc4YJmgHTRABaAhHQJXwtfjS5RV1fZQoaAZHQGQEV6mfoRtoB03oA2gIR0CV8UufmLccdX2UKGgGR0BjLcw35vcaaAdN6ANoCEdAlfG0GqxTsXV9lChoBkdAZAmMH8jzI2gHTegDaAhHQJXx6N0eU6h1fZQoaAZHQGQ9DBVMmF9oB03oA2gIR0CV8iN/vv0AdX2UKGgGR0BilWt+1Bt2aAdN6ANoCEdAlg18yWRigHV9lChoBkdAOk0WhysCDGgHTQIBaAhHQJYP9DjR2KV1fZQoaAZHQGHv22oegctoB03oA2gIR0CWGlN3GGVSdX2UKGgGR0Bmu4PwuuifaAdN6ANoCEdAlh3dZid8RnV9lChoBkdAZoOMYMvysmgHTegDaAhHQJYij+wTufF1fZQoaAZHQGabzS1E3KloB03oA2gIR0CWJ5hbW3BpdX2UKGgGR0BinV1p0wJxaAdN6ANoCEdAljG+pKjBVXV9lChoBkdAVvlSeiBXjmgHTegDaAhHQJYyee8PFvR1fZQoaAZHQGDq3k5p8F9oB03oA2gIR0CWM2+23KB/dX2UKGgGR0BjpSup0fYBaAdN6ANoCEdAljP7GJemenV9lChoBkdAYFQyXUpd8mgHTegDaAhHQJY0I7q6e5F1fZQoaAZHQFdE4j8k2P1oB00bAWgIR0CWN+SBshxHdX2UKGgGR0BgKZh6Skj5aAdN6ANoCEdAljitwFTvRnV9lChoBkdAZWBDZ13dK2gHTegDaAhHQJY73oouwot1fZQoaAZHQFzmvAXVLBdoB03oA2gIR0CWPHVQQ+UydX2UKGgGR0BhdJ95Qgs9aAdN6ANoCEdAljzpimVJMHV9lChoBkdAZfCVIqbz9WgHTegDaAhHQJY9ZAOavzR1fZQoaAZHQFAtbN8ma6VoB00qAWgIR0CWU7WSEDhcdX2UKGgGR0BmH5kK/mDEaAdN6ANoCEdAllrwuZkTYnV9lChoBkdATNLnaFmFrWgHS+xoCEdAllvqhtcfNnV9lChoBkdAYHbuIhyKemgHTegDaAhHQJZcwzYVZcN1fZQoaAZHQF5CIfKZDzBoB03oA2gIR0CWZA2+wkgPdX2UKGgGR0BioMqpcX3yaAdN6ANoCEdAlmdhpDeCTXV9lChoBkdARMXzQNTcZmgHTQIBaAhHQJZpbAIppex1fZQoaAZHQGJsyDZlFttoB03oA2gIR0CWa92sJY1YdX2UKGgGR0BQA6SLZSNwaAdNCwFoCEdAlnsHJgb6xnV9lChoBkdAMokhvBJqZmgHS/VoCEdAlnz/wRXfZXV9lChoBkdAZYc5Lh73PGgHTegDaAhHQJZ+e6GxlhB1fZQoaAZHQGFyGC7K7qZoB03oA2gIR0CWf5O9nK4hdX2UKGgGR0BkZXV/c32maAdN6ANoCEdAloApbyH2y3V9lChoBkdAZmllA/s3Q2gHTegDaAhHQJaAUAU+LWJ1fZQoaAZHQGdrSpiqhlFoB03oA2gIR0CWhEQ79ycTdX2UKGgGR0BmQ+HP/rB1aAdN6ANoCEdAloUFqrR0EHV9lChoBkdAYVHQpnYg72gHTegDaAhHQJaIFZ1V5rx1fZQoaAZHQGLcwwK0D2doB03oA2gIR0CWiJyWzF/AdX2UKGgGR0BdcjwH7gsLaAdN6ANoCEdAlokCY9gWrXV9lChoBkdASUNgSeyzHGgHS+toCEdAlotPMGHHm3V9lChoBkdAYpHCN0eU6mgHTegDaAhHQJaMK3c580F1fZQoaAZHQHI6ugte2NNoB02VA2gIR0CWoQpCKJl8dX2UKGgGR0BjKB+z+m3waAdN6ANoCEdAlqZXIyTINnV9lChoBkdAYu69OARTTGgHTegDaAhHQJawyM4tHx11fZQoaAZHQGGAk4FRpDhoB03oA2gIR0CWtLV0Lc9GdX2UKGgGR0BiaFn003wTaAdN6ANoCEdAlsfGvwEyL3V9lChoBkdAZnINDtw71mgHTegDaAhHQJbJF0xM3611fZQoaAZHQGL2ERradtloB03oA2gIR0CWykiKR+z/dX2UKGgGR0BitRR/EwWWaAdN6ANoCEdAlsszo2XLNnV9lChoBkdAYJ4jvd/KAGgHTegDaAhHQJbLt7BwdbR1fZQoaAZHQGZD77TDwYtoB03oA2gIR0CWz49HMEA6dX2UKGgGR0Bjx6o86mwaaAdN6ANoCEdAltA/V3EAHXV9lChoBkdAaW/hvR7Z4GgHTegDaAhHQJbTCLEUCaJ1fZQoaAZHQGHZYgaFVT9oB03oA2gIR0CW04rhR64UdX2UKGgGR0BddUFnqVyFaAdN6ANoCEdAltPnKB/ZunV9lChoBkdAIGTKLbYbsGgHS/RoCEdAltYeocaOxXV9lChoBkdAZXJ7oB7u2WgHTegDaAhHQJbWR7TlT3t1fZQoaAZHQGGwuM+/xlRoB03oA2gIR0CW1xoScslLdX2UKGgGR0Bic6BK+SKWaAdN6ANoCEdAlu4neFcps3V9lChoBkdATPVFDv3JxWgHS+BoCEdAlu/U4WDYiHV9lChoBkdAQ2fEhq0ty2gHS/9oCEdAlvJJlFtsN3V9lChoBkdAY8mHFglWwWgHTegDaAhHQJbyqNHYpUh1fZQoaAZHQFPMRtgrpaBoB0vtaAhHQJbz6+zt1IR1fZQoaAZHQGLygpKBd2RoB03oA2gIR0CW+My9mHxjdX2UKGgGR0BPeBwMpgCwaAdL4mgIR0CW+o+Vkc0cdX2UKGgGR0BgMTtLL6k7aAdN6ANoCEdAlvukF4cFQnV9lChoBkdAQudRNyo4uWgHS/loCEdAlwi2CqZMMHV9lChoBkdAYB/x6v7m+2gHTegDaAhHQJcLztShrWR1fZQoaAZHQF52s41gpjNoB03oA2gIR0CXDQ5S3soldX2UKGgGR0Bph/fXPJJYaAdN6ANoCEdAlw6JjpcHGHV9lChoBkdAYsWEeyRjjWgHTegDaAhHQJcQehxo7FN1fZQoaAZHQF/kDaXa8HxoB03oA2gIR0CXFbAJswcpdX2UKGgGR0Bnqqo4uK4yaAdN6ANoCEdAlxagccU/OnV9lChoBkdATQoDA8B+4WgHS/BoCEdAlxhGzSkTH3V9lChoBkdAY0Tmg8KXwGgHTegDaAhHQJcaxsdkrgB1fZQoaAZHQGXwVO9FnZloB03oA2gIR0CXHgjcEeQudX2UKGgGR0BjrIetCAtnaAdN6ANoCEdAlx8X6qKgqXV9lChoBkdAYpY2CuloDmgHTegDaAhHQJc0DoFFDv51fZQoaAZHQGeaS/j81oBoB03oA2gIR0CXOSdbgTAWdX2UKGgGR0BoIneLvTgEaAdN6ANoCEdAlzmbsSkCWHV9lChoBkdAXQQNWluWKWgHTegDaAhHQJc7OC7K7qZ1fZQoaAZHQGClT0g8r7RoB03oA2gIR0CXQRlCkXUIdX2UKGgGR0BhrjP+n62waAdN6ANoCEdAl0PJuZThpHV9lChoBkdAZVBzFuNxVGgHTegDaAhHQJdaZMbm2b51fZQoaAZHQGcARJmNBGBoB03oA2gIR0CXW5I7/4qPdX2UKGgGR0Bm3IMMI/qxaAdN6ANoCEdAl1yx6KLsKXV9lChoBkdAYX9nZCfHxWgHTegDaAhHQJdeJsQ/X5F1fZQoaAZHQGHF+MAFPi1oB03oA2gIR0CXYhuy/sVtdX2UKGgGR0BlScijcmBwaAdN6ANoCEdAl2LVnyup0nV9lChoBkdAZqTck+otMGgHTegDaAhHQJdkDMt9QXR1fZQoaAZHQGUY2RJVbRpoB03oA2gIR0CXZlOXmeUZdX2UKGgGR0BlGGViWmgraAdN6ANoCEdAl2kmNrCWNXV9lChoBkdAYhgAp8WsR2gHTegDaAhHQJdqFEc81XN1fZQoaAZHQGPjiBf8dghoB03oA2gIR0CXbgHWz4UOdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f2e6c20d3767ebba4fa6f15d5c2e21ec1f6340bcb917c6b5f43a8ac6b48c15a
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c61675c8d390de25dc4cf3b7917f9a4bd115121dbaedf799fef6386d98933cb
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (153 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.9925675, "std_reward": 19.321359050866516, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-29T01:18:09.029682"}