File size: 1,210 Bytes
5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db 5afe60b 2eb58db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language: en
license: mit
tags:
- phi-2
- peft
- lora
- fine-tuned
- neuroscience
---
# Neuroscience Fine-tuned Phi-2 Model
## Model Description
This is a fine-tuned version of Microsoft's Phi-2 model, adapted specifically for neuroscience domain content.
## Training Procedure
- **Base Model**: Microsoft Phi-2 (2.7B parameters)
- **Training Type**: LoRA fine-tuning
- **Training Dataset**: BrainGPT/train_valid_split_pmc_neuroscience_2002-2022_filtered_subset
- **Training Duration**: 3+ epochs
- **Parameter-Efficient Fine-Tuning**: Used LoRA with r=16, alpha=32
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto")
# Load adapter
model = PeftModel.from_pretrained(base_model, "alaamostafa/Microsoft-Phi-2")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
# Generate text
input_text = "Recent advances in neuroscience suggest that"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
|